Electronic Supporting Information (ESI)

Role of halogen atoms in the mechanical properties of para-substituted benzaldehyde oxime

Priyasha Harsha,^a and Dinabandhu Das^{*, a}

School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India

Email: jnu.dinu@gmail.com

TABLE OF CONTENTS

1)	Experimental Section	S3
	a) FTIR Spectra	
2)	Powder X-Ray Diffraction Study	S4
3)	Thermogravimetric Analysis (TGA)	S 5
4)	Differential scanning calorimetry (DSC)	S5-S6
5)	Crystal Morphology with Face indices	S6-S8
6)	Energy calculations figures and tables	S9-S11
7)	Unit cell parameters	S12
8)	H-Bonding parameters	S12
9)	Description of videos (Video S1, S2, S3 and S4)	S13
10)	References	S13

1. Experimental Section

Synthesis: All the respective aldehydes, hydroxylamine and sodium hydroxide were purchased from Sigma-Aldrich. After distillation, commercially available solvents such as ethanol, ethyl acetate and hexane were used. All the compounds were synthesized by their reported literature¹ and compounds are characterized by IR, PXRD and matched the unit cell parameters to confirm the structure by SCXRD. Transmission infrared spectra of the solids were obtained using a Fourier–transform infrared spectrometer (Shimadzu), and 43 scans were collected at 4 cm⁻¹ resolution for each sample. The spectra were measured over the range of 4000-400 cm⁻¹.

a) FTIR Spectra

Figure S1: IR spectrum of *p*-substituted benzaldehyde oxime (indicates the formation of product by the O–H stretching(3200-3550cm⁻¹) and C=N stretching(1690-1640cm⁻¹)

2. Powder XRD Diffraction Patterns:

Powder X-ray diffractogram was measured on a Rigaku powder X-ray diffractometer (Miniflex600 with Cu K α radiation, $\lambda = 1.54059$ Å) operating in Bragg–Brentano geometry. Crystals of the compound were crushed gently and layered on a sample holder. Data were recorded at room temperature at a scan rate of 2°/min from 5° to 40° (20 value).

Figure S2: Experimental and simulated PXRD pattern of (a) 4-FBO, (b) 4-CBO, (c) 4-BBO and (d) 4-IBO

3. Thermogravimetric Analysis (TGA)

Thermogravimetric Analysis (TGA) measurement was done in Mettler Toledo instrument supported with StarRe software version 13.00 with a heating rate of 5°C/min.

Figure S3: TGA thermogram shows mass loss of (a) 4-FBO, (b) 4-CBO, (c) 4-BBO and (d) 4-IBO

4. Differential scanning calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed on a Mettler Toledo DSC1 calorimeter with FRS5 DSC Sensor attached to a HUBER TC100-MT chiller and STARe software v 13.00. Pure crystalline powder was sealed in an aluminium pan and covered with a pierced lid. Samples were heated at the rate of 10°C/min under the flow of N2 gas at the rate of 20 ml/min.

Figure S4: DSC thermograms show the melting point of (a) 4-FBO (88°C), (b) 4-CBO (104°C), (c) 4-BBO (114°C) and (d) 4-IBO (120°C).

5. Crystal Morphology with Face indices

Figure S5: Face indices of all compounds determined using BFDH morphology in Mercury software.²

(a)

(b)

(c)

Figure S6: Crystal morphology with face indices and packing of the molecules on (010), (001) and (100) faces, (a) **4-FBO**, (b) **4-CBO** (c) **4-BBO** (d) **4-IBO**

NOTE: Structure graphics shown in the figures were created using the X-Seed software package version 4.0^3

6. (a) Energy calculations:

Crystal Explorer 21.5⁴ was used for the calculation of interaction energy and the generation of energy framework diagrams of the single crystals of 4-FBO, 4-CBO, 4-BBO and 4-IBO based on their crystal structure. The energy scale factor is 70 and the energy threshold is 2 kJ mol⁻¹. The interaction energy is estimated from the accurate unperturbed method CE-B3LYP/6-31g (d,p) energy model for **4-FBO**, **4-CBO** and **4-BBO**. And for **4-IBO** energy is calculated by fast unperturbed molecular wave function using the CE-HF/3-21G energy model.

Figure S7: Energy frameworks corresponding to the different energy components in **4-FBO** (Brittle), **4-CBO** (plastic), **4-BBO** (elastic) and **4-IBO** (plastic). The energy scale factor is 70 and the energy threshold is 2 kJ mol⁻¹.

(b) Quantitative parameters of different energies contributing to intermolecular interactions:

Fig. S8 Energy framework diagram of total energy (annotated) and energy calculation table of 4-FBO.

Fig. S9 Energy framework diagram of total energy (annotated) and energy calculation table of 4-CBO

Fig. S10 Energy framework diagram of total energy (annotated) and energy calculation table of 4-BBO

Fig. S11 Energy framework diagram of total energy (annotated) and energy calculation table of 4-IBO

Note: All these energy calculations have been done in crystal explorer 21.5 software⁴

7. Crystallographic information:

Although the crystal structures of all the compounds in this study were reported before in the literature,⁵⁻ ⁸ unit cell parameters of all these crystals were determined to confirm the structures.

Cell parameters	4-FBO	4-CBO	4-BBO	4-IBO
Formula	C ₇ H ₆ F N O	C ₇ H ₆ Cl N O	C ₇ H ₆ Br N O	C ₇ H ₆ I N O
Molecular weight (g	139.13	155.58	200.03	247.03
mol ⁻¹)				
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_1/c$	$P 2_1/c$	$P 2_1/c$	<i>P</i> -1
a (Å)	14.213(4)	6.086(2)	6.161(4)	7.203(4)
b (Å)	3.767(9)	4.754(2)	4.766(4)	7.394(4)
c (Å)	11.936(4)	25.153(8)	25.187(3)	7.781(3)
α (°)	90	90	90	107.83(2)
β (°)	99.21(2)	93.70(3)	94.00(2)	100.82(2)
γ (°)	90	90	90	90.77(2)
V (Å ³)	630.905	726.231	737.773	386.482
Reported Refcode	JIYYIC ⁵	CBALOS026	BAGWOW017	GIKSOK ⁸

Table S5: Unit cell parameters of para-substituted benzaldehyde oximes:

Note: Unit cell parameters of the crystal structure of the compounds were compared with previously reported structures.⁵⁻⁸

8. H-bonding parameters:

Table S6: H-bonding parameters of para-substituted benzaldehyde oximes:

Name of the compound	H-Bonds	D H (Ấ)	H…A (Å)	D…A (Å)	∠D H…A (°)
	O(1) H(6)N(1)	1.00(2)	1.88(2)	2.799(1)	151.8(1)
4 500	C(7) H(5)O(1)	0.95	2.498	3.423(1)	165
4-FBO	C(5) H(3)…F(1)	0.949	2.646	3.442(1)	141.57
	*C(5) H(3)…π	0.949	3.308	3.932	125.12
	O(1) H(1)N(1)	0.92(3)	1.952(2)	2.824(2)	155.56(2)
4-CBO	C(3) H(2)····O(1)	0.96(2)	2.58(2)	3.442(2)	150.09(2)
	**C(6) H(6)… π	0.95(2)	2.975(2)	3.855(2)	156.03(1)
4 000	O(1) H(1)N(1)	0.91	1.94	2.820(5)	162
4-BBO	C(5) H(4)O(1)	0.95	2.621	3.510(4)	155.7
4-IBO	O(1) H(6)N(1)	0.807(3)	2.08(3)	2.839(2)	156(3)

* In case of 4-FBO, C(5) H(3) $\cdots\pi$ interactions are calculated by considering the centroid of C(2) and C(3) of one molecule and C(5) H(3) of other molecule in the crystal structure.

** In case of 4-CBO, C(6) H(6)... π interactions are calculated by considering the C(6) of one molecule as π centre and C(6) H(6) of other molecule in the crystal structure.

9. Description of Animations:

The mechanical behaviour of all the crystals was recorded by videography to show real-time mechanical properties. Video S1 shows the brittle nature of **4-FBO**, Video S2 shows the plastic behaviour of **4-CBO**, Video S3 shows the elastic behaviour of **4-BBO** and Video S4 shows the plastic nature of **4-IBO**.

10. References

- 1. Q. Feng, H. Huang, and J. Sun Org. Lett. 2021, 23, 2431-2436
- C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings,
 G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Cryst. 2020, 53, 226-235
- 3. L. J. Barbour, X-Seed. J. Supramol. Chem., 2001, 1, 189.
- 4. D. Jayatilaka, and M. A. Spackman, J. Appl. Cryst., 2021, 54,1006-1011.
- L. R. Gomes, J. N. Low, T.V. Mourik, H Früchtl, M. V.N. de Souza, C. F. da Costa and J. L. Wardell, Z. Naturforsch. 2019; 74, 319–334
- 6. J.T. Mague, Y. E. Bakri, CSD Communication, 2016
- 7. L. Zhang, H. Chen, Z. Zha and Z. Wang, Chem. Commun., 2012, 48, 6574-6576
- C.B. Aakeröy, A. S. Sinha, K. N. Epa, P. D. Chopade, M. M. Smith and J. Desper, *Cryst. Growth Des.*, 2013, 13, 2687–2695