Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Data

Boosting photocatalytic activity of $ZnIn_2S_4$ -based photocatalyst for H_2 evolution using porous $ZnWO_4$ nanoflakelets as a cocatalyst

Fengchun Dong¹, Hui Liu¹, Lixia Qin¹, Taiyang Zhang^{1,2,*}, Xiangqing Li¹, Shi-Zhao Kang^{1,*}

¹School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China ²Shanghai Engineering Research Center of Solid Waste Treatment and Resource

Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China

* Corresponding author: Shi-Zhao Kang, and Taiyang Zhang

Tel./fax: +86 21 60873061.

E-mail address: kangsz@sit.edu.cn (S.-Z. Kang), taiyangzhang@sit.edu.cn (T. Zhang)

Fig. S1. HRTEM image of ZIS/PZW (5%).

Fig. S2. (A) SEM image of ZIS/PZW (5%) and (B, C, D, E and F) corresponding element mappings (Zn, W, O, S and In).

Fig. S3. XPS survey spectrum of ZIS/PZW (5%).

Supplementary Table S1

Table S1. Photocatalytic activity of the $ZnIn_2S_4$ -based photocatalysts reported recently

Photocatalysts	H ₂ generation rate (mmol g ⁻¹ h ⁻¹)	Ref.
ZIS/PZW (5%)	8.86	this work
$ZnIn_2S_4$ nanosheets on FeWO ₄ flowers	3.53	1
$NiWO_4/ZnIn_2S_4$ heterojunction	30.51	2
$NiS/ZnIn_2S_4/AgIn(WO_4)_2$ nanocomposite	4.82	3
Ag ₂ S modified ZnIn ₂ S ₄ nanosheets	1.00	4
ZnIn ₂ S ₄ /black TiO ₂ hollow spheres	5.56	5

Fig. S4. Photocatalytic activity of ZIS/PZW (5%) for H_2 evolution when the sacrificial agent is (a) methyl alcohol, (b) glycol, (c) triethanolamine, (d) Na_2S/Na_2SO_3 or (e) lactic acid (photocatalyst 15 mg; temperature 10 °C; irradiation time 4 h).

Fig. S5. UPS spectra of (A) the porous $ZnWO_4$ nanoflakelets and (B) the flower-like $ZnIn_2S_4$ microspheres.

Fig. S6. Mott-Schottky curves of (A) the flower-like $ZnIn_2S_4$ microspheres and (B) the porous $ZnWO_4$ nanoflakelets.

Fig. S7. Fluorescence spectra of (a) the $ZnIn_2S_4$ microspheres and (b) ZIS/PZW (5%) when the excitation wavelength is 360 nm.

Fig. S8. Time-resolved fluorescence spectra of (A) the ZnIn₂S₄ microspheres and (B) ZIS/PZW (5%).

References

[1] D. Kong, X. Hu, J. Geng, Y. Zhao, D. Fan, Y. Lu, W. Geng, D. Zhang, J. Liu, H.

Li X. Pu, Growing $ZnIn_2S_4$ nanosheets on FeWO₄ flowers with p-n heterojunction structure for efficient photocatalytic H₂ production, *Appl. Surf. Sci.*, 2022, **591**, 153256.

[2] T. Gao, Y. Li, J. Tian, J. Fan, T. Sun, E. Liu, Facile fabrication of NiWO₄/ZnIn₂S₄
p-n heterojunction for enhanced photocatalytic H₂ evolution, *J. Alloys Compd.*, 2023,
951, 169939.

[3] H. Zhang, H. Gu, X. Wang, S. Chang, Q. Li, W.-L. Dai, Fabrication of noblemetal-free hierarchical rectangular tubular S-scheme $NiS/ZnIn_2S_4/AgIn(WO_4)_2$ nanocomposite for highly efficient photocatalytic hydrogen evolution, *Chem. Eng. J.*, 2023, **457**, 141185.

[4] J. Liu, G. Chen, J. Sun, Ag₂S-modified ZnIn₂S₄ nanosheets for photocatalytic H₂ generation, ACS Appl. Nano Mater., 2020, 3, 11017-11024.

[5] B. Sun, J. Bu, Y. Du, X. Chen, Z. Li, W. Zhou, O, S-dual-vacancy defects mediated efficient charge separation in ZnIn₂S₄/black TiO₂ heterojunction hollow spheres for boosting photocatalytic hydrogen production, *ACS Appl. Mater. Interfaces*, 2021, **13**, 37545-37552.