Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Visible-Light-Induced Arylation *via* Electron-Donor-Acceptor Complex: a Catalyst-Free Approach for the Synthesis of N-(Hetero) Aryl Sulfonamides

Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005

Arsala Kamal^[a], Vandana Srivastava^[a], and Sundaram Singh*^[a]

* Address for Correspondence

Dr. Sundaram Singh, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi – 221 005, U.P., India,

E-mail: sundaram.apc@itbhu.ac.in

Tel: +91 9451658650

Table of Content

1. General considerations	S2
1.1 The visible-light irradiation setup.	S2
2. Experimental Procedures	S3
2.1 General procedure for the preparation of N-aryl Sulfonamide	S3
2.2 The gram-scale synthesis	S3
2.3 Application under the sunlight	S3
2.4 Synthesis of biologically relevant molecules	S4
3. Optimizations	S4
4. Mechanistic Study	S6
4.1. Radical trapping experiments	S6
4.2 UV-Vis absorption experiment	S 8
4.3 Stoichiometry of the EDA complex 1b+2a.	S8
4.4 On/Off experiment	S9
5. Characterization of product	S9
6. ¹ H NMR ¹³ C NMR Spectra	S25
7. HRMS Spectra (Figures S4-S5)	S119

1. General considerations

All commercially available reagents and solvents were used directly without further purification. All reactions were conducted under an oxygen atmosphere and oven-dried glasswares were used. All reactions were conducted using a blue light-emitting diode (LED) as the visible-light source. The progress of the reaction was measured by thin-layer chromatography (TLC) and visualized using UV light. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. UV-visible spectroscopy of the reaction solution was recorded on a SHIMADZU UV-3600 UV-visible spectrophotometer. Perkin Elmer Micro analyzer was used for (C, H, and N All the ¹H, ¹³C, and ¹⁹F NMR spectra were recorded through Bruker 500 MHz spectrometer (¹H NMR at 500 MHz, ¹³C NMR at 126 MHz, and ¹⁹F NMR at 126 MHz), in DMSOd₆ and CDCl₃ chemical shift was indicated in δ ppm, using TMS as an internal standard. HRMS (m/z) were recorded in an electron ionization or electrospray ionization (ESI) mode on Waters-Q-TOF Premier-HAB213 and Sciex X500R QTOF instruments.

Experimental Setup

The reactions were performed using a blue LED strip as the light source. A reaction tube was fixed at 5-6 cm from commercial 280 cm, blue LED strip (10 watts), while a fan was used to cool down the reactor (the reaction temperature within the reaction vessel was measured to be between 30-35 °C) shown in **Figure S1**.

1.1 The visible light irradiation setup.

Figure S1. A reaction setup showing the reaction tube was fixed at 5-6 cm from the blue LED strip (280 cm). [Personal photo made by the author- Arsala Kamal]

2. Experimental Procedures

2.1 General procedure for the preparation of N-Aryl Sulfonamide.

A 10 mL reaction tube equipped with a magnetic stirring bar was charged with sulfonamide derivatives 1 (0.6 mmol), diazonium salt derivatives 2 (0.3 mmol), $Cs_2CO_3(0.6 \text{ mmol})$ as a base, and solvent CH₃CN (4 mL) The mixture was then stirred at room temperature and irradiated with a (280 cm) blue LEDs light strips for 6 h. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (3x50 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and then the solvent was removed under vacuum. The residue was purified by column chromatography on neutral silica gel (ethyl acetate: hexane)

2.2 Gram-scale Experiments

The gram-scale synthesis of **3a** was prepared according to the general procedure with blue LED irradiation using sulfonamide derivatives **1b** (6 mmol), diazonium salt **2a** (3 mmol), Cs_2CO_3 (6 mmol) as base and solvent in CH₃CN (20 mL) at room temperature for 6 h. The reaction vessel (round bottom flask) was 5 cm away from the blue LED. The isolated yield of **3a** (63%, 0.466 g) was given.

Scheme S1 Gram-Scale

2.3 Application under the sunlight

Scheme S2 Synthesis under the sunlight

The synthesis under the sunlight: The reaction tube was charged with **1b** (0.6 mmol), **2a** (0.3 mmol), and Cs_2CO_3 (0.6 mmol) in CH₃CN (4 mL) at room temperature, then the reaction system

was irradiated under sunlight for 6 h (from 10:00 to 16:00; 14/09/2022. IIT BHU, Varanasi, UP India. Temperature: 25 °C – 35 °C) provided the isolated yield of **3a** was 61%.

2.4 Synthesis of biologically relevant molecules

Scheme S3 Synthesis of biologically relevant molecules

3. Optimizations

The reaction's optimization was carried out. Avoiding transition-metal catalysts was the original intention of this research. Based on this idea, we commenced our investigation with benzene diazonium salt **2a**, *p*-toluene sulfonamide **1b**, NaHCO₃ as a base in MeCN solvent under blue LED irradiation, gratifyingly desired product N-aryl sulfonamide (**3a**) was obtained in 76% isolated yield in 6 hours (**Table S1, entry 1**). Inspired by this result, benzene diazonium salt and *p*-toluene sulfonamide are selected as the model reaction to optimize reaction conditions such as base, solvents, and blue LED light (**Tables S1 & 2**). Preliminary studies revealed that the base significantly impacted the photoreaction, and Cs_2CO_3 was the best, giving the N-aryl sulfonamides **3a** with 90% yield (**Table S1, entry 3**). Other bases, including Na₂CO₃, K₂CO₃, Et₃N, and DBU aware less efficient than Cs_2CO_3 , giving **3a** in 27–80% yields (**Table S2, entries 1–6**). With Cs_2CO_3 as the base, solvent screening revealed that CH_3CN was the best solvent (**Table S1, entries 7–14**). No reaction occurred without a solvent and base (**Table S1, entries 15&16**). The increase in

the amount of base has no significant effect on the yield of the product (**Table S1**, entries 17).

H ₃ C 1b	$NH_2 + 2a$	Reaction Conditions	H ₃ C 3a
Entry	base	Solvent	Yield ^[b] %
1	NaHCO ₃	CH₃CN	76
2	Na ₂ CO ₃	CH₃CN	74
3	Cs ₂ CO ₃	CH ₃ CN	90
4	K ₂ CO ₃	CH ₃ CN	80
5	NEt ₃	CH ₃ CN	38
6	DBU	CH ₃ CN	27
7	Cs ₂ CO ₃	DCM	40
8	Cs ₂ CO ₃	Ethanol	74
9	Cs ₂ CO ₃	DMC	78
10	Cs ₂ CO ₃	Water	nr
11	Cs ₂ CO ₃	THF	nr
12	Cs ₂ CO ₃	2-MeTHF	nr
13	Cs ₂ CO ₃	DMF	nr
14	Cs ₂ CO ₃	DMSO	nr
15	Cs ₂ CO ₃	-	nr
16	-	CH ₃ CN	nr
17 ^[c]	Cs ₂ CO ₃	CH₃CN	87

Table S1 Optimization of reaction conditions^a

^aReaction conditions: **1b** (0.6 mmol), **2a** (0.3 mmol), base (0.6 mmol), solvent (4 mL), blue LED, ambient room temperature, and 6 h. ^[c]1.2 mmol Cs_2CO_3 ^[b]Isolated yield.

Moreover, upon extensive reaction optimization (**Table S2**), the best reaction conditions with 90% yield of the desired product **3a** were obtained using CH₃CN (4 mL), **2a**, **1b**, and cesium carbonate (Cs₂CO₃) as a base under blue light-emitting diodes (LEDs) at room temperature for 6 hr. (**Table S2, entry 8**). A significant drop in yield was observed while switching from blue LED to other light sources like green, purple, white LED, and 20W CFL (**Table S2, entries 2-5**). After that, the reaction without light gave no product, revealing that light is indispensable in this arylation reaction (**Table S2, entry 6**). Finally, if we prolonged the reaction time, 6 h to 8 h, the yield of the target product was still 90% (**Table S2 entry 7**).

Table S2 Reaction conditions^a

^a Reaction conditions: **1b** (0.6 mmol), **2a** (0.3 mmol), Cs₂CO₃ (0.6 mmol), CH₃CN as a solvent (4 mL), blue LED, ambient room temperature, and 6 h . ^bIsolated yield

4 Mechanistic Studies

4.1 TEMPO radical trapping experiments

Some control experiments were performed to investigate the mechanism of the photocatalyst-free approach for the synthesis of N-aryl Sulfonamides. At first 2, 2, 6, 6-tetramethylpiperidinooxy (TEMPO) (radical scavengers) (3 equiv.) was added to the reaction system, and the trace amount of the **3a** and TEMPO adducts **6a** and **6b** were detected in HRMS data from the crude reaction mixture. These results suggested that the reaction passes through a radical pathway and aryl radical from **2a** and sulfonamide radical from **1b** were involved as a reaction intermediate.

4.2 UV/Vis absorption spectrometry.

Figure S2. Absorption spectra of 1b, 2a, and mixture of 1b+2a & 1b+2a + base. (Dissolved in MeCN).

4.3 Stoichiometry of the EDA complex 1b+2a (Jobs plot)

The stoichiometry of the EDA complexes **1b &2a** was calculated using the Job's plot method. The Job's plot of the EDA complex between **1b** and **2a** was calculated by measuring the absorption of Acetonitrile solutions at 490 nm with different donor/acceptor ratios with constant concentration

(0.02 M) of the two components. The absorbance values were plotted against the molar fraction (%) of **2a**. The Job's plot analysis of the EDA complex between **1b** and **2a** showed a maximal absorbance at 50% molar fraction of **2a** indicating the 1:1 stoichiometry of the EDA complex in solution.

4.4 ON-OFF Experiments

The reaction between **1b** and **2a** was conducted under standard conditions. The reaction mixture was subjected to sequential periods of stirring under visible-light irradiation (blue LED) followed by stirring in the absence of light. At each time point, one reaction system was suspended, which was then purified with column chromatography to give the corresponding products **3a**. The yield of **3a** was measured by the weight of the product.

Figure S3. On-Off Experiments

5. Characterization of the Target Products

4-methyl-N-phenylbenzenesulfonamide (3a) 88% yield. Pale green solid. m.p.: 104-105 °C ¹H NMR (500 MHz, DMSO d₆) δ 10.13 (s, 1H), 7.73 (d, *J* = 9.6 Hz, 2H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.52-7.55 (m, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 2.17 (s, 3H). ¹³C NMR (126

MHz, DMSO d₆) δ 139.98, 135.45, 133.88, 133.23, 130.03, 129.64, 127.11, 121.11, 20.75. HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₄NO₂S 248.0745; found: 248.0733

4-methyl-N-(o-tolyl)benzenesulfonamide **(3b)** 84% yield. Pink solid. m.p.: 106-107 °C ¹H NMR (500 MHz, DMSO d₆) δ 9.59 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.30-7.34 (m, 2H), 7.13-7.29 (m, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 2.30 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, DMSO d₆) δ 146.04, 138.18, 131.80, 131.58, 128.56, 128.15, 127.64, 125.95, 123.18, 21.25, 17.29 HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₆NO₂S 262.0901; found: 263.0917

4-methyl-N-(p-tolyl)benzenesulfonamide (3c) 86% yield. White solid. m.p.: 114-116 °C ¹H NMR (500 MHz, DMSO d₆) δ 9.95 (s, 1H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 2.32 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 145.53, 138.53, 138.40, 130.68, 129.21, 128.68, 125.95, 123.54, 21.26, 20.99. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₆NO₂S 262.0901; found: 262.0912

N-(4-methoxyphenyl)-4-methylbenzenesulfonamide **(3d)** 85% yield. Pale pink solid. m.p.: 115-117 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.97 (s, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.72 (s, 3H), 2.39 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 158.92, 142.96, 138.35, 130.04, 129.97, 129.39, 127.01, 114.09, 55.53, 21.43 HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₆NO₃S 278.0850; found: 278.0852

N-(2-hydroxyphenyl)-4-methylbenzenesulfonamide (**3e**) 84% yield. Gray solid. m.p.: 137-138 °C ¹H NMR (500 MHz, DMSO d₆) δ 10.70 (s, 1H), 9.73 (s, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.25-7.29 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.89 (t, *J* = 8.3 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 151.17, 145.96, 138.24, 129.90, 128.58, 125.96, 124.52, 119.96, 119.32, 116.62, 21.26. HRMS (ESI) m/z: [M+H] + calculated for C13H14NO3S 264.0694; found: 264.0698.

N-(4-chlorophenyl)-4-methylbenzenesulfonamide (**3f**): 87% yield. White solid. m.p.: 120-122 °C ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.23, 135.61, 135.22, 130.77, 129.82, 129.40, 127.29, 122.79, 21.57. HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₃NO₂SCI 282.0355; found: 282.0358

N-(3-chlorophenyl)-4-methylbenzenesulfonamide (**3g**) 87% yield. White solid. m.p.: 114-115 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.19 (s, 1H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.89 (t, *J* = 7.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 145.71, 139.43, 138.41, 130.00, 128.63, 128.51, 125.96, 122.22, 121.34, 119.53, 21.26. HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₃NO₂SCl 282.0355; found: 282.0362

N-(4-bromophenyl)-4-methylbenzenesulfonamide (**3h**): 92% yield. White solid. m.p.: 140-145°C ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 2.40 (s, 26H).¹³C NMR (126 MHz, CDCl₃) δ 144.23, 135.62, 135.16, 130.84, 129.81, 129.42, 127.28, 122.86, 21.59.HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₃NO₂SBr 325.9850; found: 325.9851

N-(4-fluorophenyl)-4-methylbenzenesulfonamide **(3i)**: 86% yield. White solid. m.p.: 98-99 °C ¹H NMR (500 MHz, DMSO d₆) δ 10.17 (s, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 6.8 Hz, 4H), 2.33 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 144.24, 142.13, 136.78, 130.38, 127.17, 127.03, 127.00, 119.09, 21.42 ¹⁹F NMR (471 MHz, CDCl3) δ -116.24 – -116.48. HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₃NO₂SF 266.0651; found: 266.0654

4-methyl-N-(4-nitrophenyl)benzenesulfonamide **(3***J***)**: 91% yield. Pale gray solid. m.p.: 180-182 °C. ¹H NMR (500 MHz, DMSO d₆) δ 7.95 (d, *J* = 9.2 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 9.2 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 155.84, 145.25, 138.71, 136.28, 128.73, 126.83, 125.97, 113.12, 21.25. HRMS (ESI) m/z: [M+H] + calculated for C₁₃H₁₃N₂O₄S 293.0596; found: 293.0599

N-(2-cyanophenyl)-4-methylbenzenesulfonamide (**3k**) 86% yield. White solid. m.p.: 172-173 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.51 (d, *J* = 8.1 Hz, 2H), 7.32-7.39 (m, 1H), 7.29-7.31 (m,1H), 7.14-7.16 (m, 2H), 6.80-6.82 (m, 1H), 6.60-6.63 (m,1H), 2.30 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 151.61, 145.41, 138.60, 134.45, 132.93, 128.69, 125.98, 118.53, 116.71, 115.92, 94.23, 21.26. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S 273.0697; found: 273.0699

4-methyl-N-(2-(trifluoromethyl)phenyl)benzenesulfonamide **(31)**: 84% yield. White solid. m.p.: 124-125 °C ¹H NMR (500 MHz, DMSO d₆) δ 10.83 (s, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 144.24, 142.13, 136.78, 130.38, 127.17, 127.03, 127.00, 124.00, 123.00, 119.09, 21.42 ¹⁹F NMR (471 MHz, DMSO d₆) δ -61.39. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₂SF₃ 316.0619; found: 316.0619

4-methyl-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (**3m**): 88% yield. Cream solid. m.p.: 144-145 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.28-7.30 (m,2H), 7.21 (t, *J* = 8.6 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.57, 140.03, 135.69, 129.96, 127.27, 126.62, 126.59, 125.01, 122.85, 119.60, 21.54. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.20.HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₂SF₃ 316.0619; found: 315.0620

4-methyl-N-(naphthalen-1-yl)benzenesulfonamide **(3n):** 90% yield. brownish gray solid. m.p.: 109-111°C ¹H NMR (500 MHz, DMSO d₆) δ 10.49 (s, 1H), 7.80 (d, *J* = 7.9 Hz, 3H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.58 (s, 1H), 7.42-7.45 (m,1H), 7.38 (t, *J* = 6.9 Hz, 1H), 7.30-7.32 (m, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 143.76, 137.06, 135.98, 133.70, 130.40, 130.15, 129.48, 127.95, 127.62, 127.23, 127.11, 125.44, 120.70, 116.20, 21.37. HRMS (ESI) m/z: [M+H] + calculated for C₁₇H₁₆NO₂S 298.0901; found: 298.0912

N-(4-acetylphenyl)-4-methylbenzenesulfonamide (**30**): 79% yield. Brown solid. m.p.: 198-200 ¹H NMR (500 MHz, DMSO d₆) δ 7.84 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 2.47 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 196.31, 145.50, 138.54, 130.73, 128.68, 125.96, 117.61, 26.72, 21.26. HRMS (ESI) m/z: [M+H] + calculated for C₁₅H₁₆NO₃S 290.0850; found: 290.0844

4-methyl-N-(pyridin-2-yl)benzenesulfonamide **(3p):** 79% yield. light yellow solid m.p.: 213-214 °C ¹H NMR (500 MHz, DMSO d₆) δ 11.87 (s, 1H), 8.02 (d, *J* = 6.1 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.70 (t, *J* = 8.9 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 1H), 6.86-7.88 (m, 1H),

2.34 (s, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 153.44, 142.94, 140.60, 139.39, 129.85, 127.08, 116.25, 114.01, 21.40. HRMS (ESI) m/z: [M+H] + calculated for C₁₂H₁₃N₂O₂S 249.0697; found: 249.0699

N-(5-bromopyridin-2-yl)-4-methylbenzenesulfonamide (**3q**): 81% yield. Yellow liquid b.p.: 222-224 °C (reptd.) ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 2H), 7.53-7.56 (m, 1H), 7.37 (d, *J* = 8.9 Hz, 1H), 7.27 (d, *J* = 8.2 Hz, 2H), 6.49 (d, *J* = 8.8 Hz, 1H), 4.84 (s, 1H), 2.41 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 156.76, 149.18, 144.39, 141.43, 140.75, 129.91, 127.18, 113.47, 110.57, 21.60. HRMS (ESI) m/z: [M+H] + calculated for C₁₂H₁₂N₂O₂SBr 326.9802; found: 326.97.98

4-methyl-N-(pyrimidin-2-yl)benzenesulfonamide (**3r**): 85% yield. White solid. m.p.: 213-214 °C ¹H NMR (500 MHz, DMSO d₆) δ 8.65 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 1H), 2.29 (s, 3H). HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₄N₃O₂S 250.0650; found: 250.0654

N-(1H-benzo[d]imidazol-2-yl)-4-methylbenzenesulfonamide **(3s)**: 86% yield. White solid. m.p.: 213-214 °C ¹H NMR (500 MHz, DMSO d₆) δ 8.44 (s, 2H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.33 (m, 1H), 7.24 – 7.19 (m, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 2.28 (s, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 151.06, 145.30, 138.70, 130.06, 128.73, 125.9, 123.54, 111.81, 21.24. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₄N₃O₂S 288.0806; found: 288.0802

N-(benzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide (**3t**): 79% yield. Cream white solid. m.p.: 243-245 °C ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 6.3 Hz, 4H), 7.13 (d, *J* = 4.6 Hz, 2H), 6.52 (d, *J* = 4.6 Hz, 1H), 5.60 (s, 1H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.79, 143.21, 138.10, 129.46, 126.75, 124.38, 107.84, 29.72, 21.56. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 304.0340; found: 304.0339

4-methyl-N-(thiazol-2-yl)benzenesulfonamide (**3u**): 78% yield. Yellow solid. m.p.: 137-138 °C ¹H NMR (500 MHz, DMSO d₆) δ 12.69 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 169.27, 142.62, 140.00, 129.80, 126.29, 124.89, 108.60, 21.40. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 254.0184; found: 254.0183

N-phenylbenzenesulfonamide **(4a):** 92% yield, White solid. m.p.: 105-106 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.60 (t, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 4H), 7.46 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 145.53, 138.53, 138.40, 130.68, 129.21, 128.68, 125.95, 123.54. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 233.0510; found: 233.0509

2-methyl-N-phenylbenzenesulfonamide (4b): 82% yield, White solid. m.p.: 68-70 °C ¹H NMR (500 MHz, DMSO d₆) δ 9.59 (s, 1H), 7.65 (d, *J* = 7.3 Hz, 3H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.15 – 7.12

(m, 1H), 7.08-7.10 (m,2H), 6.98 - 6.94 (m, 1H), 1.96 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 141.01, 135.21, 134.61, 133.18, 131.19, 129.64, 126.97, 126.95, 126.79, 17.99. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 247.0667; found: 247.0668

2,4,6-trimethyl-N-phenylbenzenesulfonamide (4c): 48% yield, White solid. m.p.: 168-169 °C, ¹H NMR (500 MHz, DMSO d₆) δ 10.18 (s, 1H), 7.21 (t, *J* = 7.9 Hz, 2H), 7.01 – 6.95 (m, 5H), 2.55 (s, 6H), 2.22 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 142.48, 139.09, 138.11, 134.30, 132.25, 129.60, 123.99, 119.55, 22.91, 20.83. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 275.0980; found: 275.0982

4-methoxy-N-phenylbenzenesulfonamide (4d): 93% yield, White solid. m.p.: 105-106 °C ¹H NMR (500 MHz, DMSO d₆) δ 9.92 (s, 1H), 7.67-7.69 (m, 2H), 7.58-7.61 (m, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 3.66 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 157.00, 139.91, 133.17, 130.52, 129.59, 127.13, 123.93, 114.74, 55.59. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 263.0616; found: 263.0318

2-hydroxy-N-phenylbenzenesulfonamide (4e): 88% yield, brown solid. m.p.: 121-122 °C, ¹H NMR (500 MHz, DMSO d₆) δ 9.23 (s, 2H), 7.73 (d, *J* = 7.3 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 7.7 Hz, 1H), 6.62 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO d₆) δ 150.53, 142.56, 132.23, 129.12, 127.00, 124.60, 123.47, 119.23, 114.89. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 249.0460; found: 249.0461

4-chloro-N-phenylbenzenesulfonamide **(4f)** 83% yield, White solid. m.p.: 103-105 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.73-7.75 (m, 2H), 7.55 (t, *J* = 6.7 Hz, 1H), 7.50-7.54 (m, 2H), 7.20-7.22 (m, 2H), 7.02-7.04 (m, 2H). ¹³C NMR (126 MHz, DMSO d₆) δ 141.33, 139.84, 132.71, 129.51, 129.29, 126.99, 126.79, 122.09. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 267.0120; found: 267.0117

3-chloro-N-phenylbenzenesulfonamide **(4g):** 81% yield, White solid. m.p.: 90-92 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.74 (d, *J* = 9.6 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 3H), 7.04 (t, *J* = 8.1 Hz, 1H), 6.94 (s, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 6.71 (d, *J* = 9.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO d₆) δ 144.14, 133.31, 131.39, 130.82, 130.39, 129.06, 126.80, 119.63, 119.16, 115.36. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 267.0120; found: 267.0115

3-bromo-N-phenylbenzenesulfonamide **(4h):** 87% yield, White solid. m.p.: 105-106 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.94-7.95 (m, 2H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 7.3 Hz, 2H), 7.01 (d, *J* = 9.3 Hz, 1H), 6.74 (s, 1H), 6.60 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO d₆) δ 138.83, 136.09, 131.91, 129.28, 126.88, 126.76, 125.68, 119.03, 112.84 HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 310.9616; found: 310.9614

4-bromo-N-phenylbenzenesulfonamide (4i): 87% yield, yellowish White solid. m.p.: 120-121 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.46-7.52 (m, 3H), 7.15 (d, *J* = 8.9 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H). ¹³C NMR (126 MHz, DMSO d₆) δ 142.49, 132.13, 129.31, 129.07, 126.91, 124.53, 122.09. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 310.9616; found: 310.9617

3-nitro-N-phenylbenzenesulfonamide (4*J*): 83% yield, orange solid. m.p.: 110-111 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.72-7.73 (m, *J* = 7.4 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 7.7 Hz, 3H), 7.28 (d, *J* = 6.7 Hz, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO d₆) δ 152.01, 148.77, 146.64, 130.14, 129.26, 128.62, 127.57, 126.57, 113.57, 110.92, HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 278.0361; found: 278.0360

4-nitro-N-phenylbenzenesulfonamide (4k): 87% yield, Yellow solid. m.p.: 137-138 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.72 (d, *J* = 7.8 Hz, 2H), 7.45-7.46 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.92-6.94 (m, 2H).¹³C NMR (126 MHz, DMSO d₆) δ 150.15, 143.79, 131.65, 129.10, 128.85, 126.84, 122.10, 115.62. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃N₂O₂S₂ 278.0361; found: 278.0363

N-phenylnaphthalene-2-sulfonamide (41): 87% yield, white solid. m.p.: 133-134 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.74-7.75 (m, 2H), 7.59 (m, *J* = 8.4 Hz, 1H), 7.52-7.56 (m, 2H), 7.37 (s, 3H), 7.22 (d, *J* = 8.9 Hz, 2H), 7.04 (d, *J* = 8.9 Hz, 2H).¹³C NMR (126 MHz, DMSO d₆) δ 141.08, 139.45, 132.83, 129.56, 129.34, 128.80, 127.01, 124.73, 123.61, 122.08. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 283.0667; found: 283.0666

4-acetyl-N-phenylbenzenesulfonamide (4m): 87% yield, Cream white solid. m.p.: 134-135 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.64-7.67 (m, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.56 (d, *J* = 8.8 Hz, 2H), 6.04 (s, 1H), 2.38 (s, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 195.40, 154.09, 131.04, 130.00, 129.06, 126.77, 125.28, 119.14, 112.91, 26.32. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 275.0616; found: 275.0615

N-phenylmethanesulfonamide (4n): 88% yield, White solid. m.p.: 100-101 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.34 (t, *J* = 7.9 Hz, 2H), 7.21-7.22 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 2.98 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 138.93, 129.76, 124.26, 120.23, 39.64 HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 173.0354; found: 173.0355

N,N-diphenylbenzenesulfonamide **(5a):** 71% yield, White solid. m.p.: 135-136 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.73 (d, *J* = 9.5 Hz, 2H), 7.54 – 7.48 (m, 3H), 7.15-7.18 (m, 4H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 157.79, 132.37, 129.83, 129.39, 129.16, 126.94, 122.08, 119.25, 115.69, HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 309.0823; found: 309.0821

N-phenyl-N-(o-tolyl)benzenesulfonamide **(5b)**: 68% yield, White solid. m.p.: 128-129 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.63-7.67 (m, 3H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.12-7.18 (m, 2H), 7.08-7.10 (m, 3H), 6.98 – 6.95 (m, 1H), 6.81 – 6.72 (m, 3H), 1.97 (s, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 157.77, 141.03, 135.22, 134.63, 133.17, 131.19, 129.84, 129.63, 126.98, 126.94, 126.78, 119.28, 115.69, 17.99. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 323.0980; found: 323.0981

N-(4-methoxyphenyl)-N-phenylbenzenesulfonamide (5c) 78% yield, White solid. m.p.: 112-113 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.67-7.69 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.18 – 7.15 (m, 2H), 6.97 (d, *J* = 7.0 Hz, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 6.77 – 6.75 (m, 3H), 3.66 (s, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 157.77, 157.00, 139.88, 133.18, 130.51, 129.84, 129.59, 127.13, 123.93, 119.27, 115.68, 114.73, 55.58. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 339.0929; found: 339.0931

N-(4-chlorophenyl)-N-phenylbenzenesulfonamide (**5d**) 76% yield, White solid. m.p.: 138-139 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.72-7.74 (m, 2H), 7.45-7.46(m, 3H), 7.15-7.18 (m, 2H), 7.04 (t, *J* = 8.1 Hz, 1H), 6.93 (t, *J* = 7.1 Hz, 1H), 6.83 (d, *J* = 9.0 Hz, 1H), 6.75-6.78 (m, 3H), 6.70 (d, *J* = 9.1 Hz, 1H).¹³C NMR (126 MHz, DMSO d₆) δ 157.79, 133.30, 131.36, 130.38, 129.84, 129.05, 126.78, 119.59, 119.25, 119.17, 115.69. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 343.0434; found: 343.0433

N-(3-fluorophenyl)-N-phenylbenzenesulfonamide (**5e**) 76 % yield, White solid. m.p.: 137-138 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.48-7.53 (m, 2H), 7.15-7-18 (m, 5H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.75-6.78 (m, 5H).¹³C NMR (126 MHz, DMSO d₆) δ 157.79, 132.31, 129.84, 129.37, 129.14, 126.94, 122.08, 119.25, 115.69. ¹⁹F NMR (471 MHz, DMSO d₆) δ -105.59. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 327.0729; found: 327.0731

N-(4-bromophenyl)-N-phenylbenzenesulfonamide (**5f**) 77% yield, White solid. m.p.: 137-138 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.75 (d, *J* = 7.0 Hz, 2H), 7.58 (t, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 2H), 7.24 (d, *J* = 8.9 Hz, 2H), 7.16 (t, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 8.9 Hz, 2H), 6.77 (t, *J* = 6.6 Hz, 3H).¹³C NMR (126 MHz, DMSO d₆) δ 157.80, 140.76, 138.95, 132.98, 129.83, 129.61, 129.40, 127.41, 127.04, 122.08, 119.25, 115.69. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 386.9929; found: 386.9926

N-(4-nitrophenyl)-N-phenylbenzenesulfonamide (**5g**) 83% yield, Yellow solid. m.p.: 130-131 °C, ¹H NMR (500 MHz, DMSO d₆) δ 8.24 (s, 2H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.14-7.18 (m, 2H), 7.01 (t, *J* = 8.9 Hz, 2H), 6.89 (d, *J* = 7.3 Hz, 2H), 6.75-6.78 (m, 3H), 6.63-6.68 (m, 1H).¹³C NMR (126 MHz, DMSO d₆) δ 157.80, 129.81, 128.89, 128.84, 128.08, 128.05, 124.23, 124.19, 121.29, 119.22, 115.69. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 354.0674; found: 354.0679

N-(3-nitrophenyl)-N-phenylbenzenesulfonamide (**5h**) 81% yield, orange solid. m.p.: 136-137 °C, ¹H NMR (500 MHz, DMSO d₆) δ 7.72 (s, 1H), 7.47-7.53 (m, 2H), 7.15-7.18 (m, 5H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.76 (s, 5H), 13C NMR (126 MHz, DMSO d₆) δ 157.89, 129.84, 129.49, 129.14, 126.94, 122.17, 119.25, 115.69. HRMS (ESI) m/z: [M+H] + calculated for C₁₄H₁₃NO₃S 354.0674; found: 354.0671

N-(2-hydroxyphenyl)-N-phenylbenzenesulfonamide (**5i**) 84% yield, White solid. m.p.: 112-113 °C, ¹H NMR (500 MHz, DMSO d₆) δ 9.16 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 3H), 7.58 – 7.53 (m, 2H), 7.49 (t, *J* = 7.5 Hz, 3H), 7.20 – 7.13 (m, 1H), 7.10 – 7.07 (m, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 8.6 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 6.3 Hz, 1H). ¹³C NMR (126 MHz, DMSO d₆) δ 157.78, 150.62, 142.08, 132.47, 129.83, 129.18, 127.05, 126.44, 125.30, 124.01, 119.28, 119.26, 115.69, 115.29.

4-aminobenzenesulfonamide *(Sulfanilamide)* **(40)** 71% yield, White solid. m.p.: 164-166 °C ¹H NMR (500 MHz, DMSO d₆) δ 7.47 – 7.44 (m, 2H), 6.89 (s, 2H), 6.61 – 6.57 (m, 2H), 5.81 (s, 2H). ¹³C NMR (126 MHz, DMSO d₆) δ 152.38, 130.50, 127.89, 112.89.

4-amino-N-(6-methoxypyrimidin-4-yl)benzenesulfonamide (*Sulfamonomethoxine*) (**3v**) 81% yield, White solid. m.p.: 206-208 °C, ¹H NMR (500 MHz, DMSO d₆) δ 11.32 (s, 1H), 8.39 (d, J = 0.9 Hz, 1H), 7.57 – 7.53 (m, 2H), 6.61 – 6.56 (m, 2H), 6.31 (d, J = 0.9 Hz, 1H), 6.09 (s, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, DMSO d₆) δ 170.25, 159.26, 153.81, 129.66, 113.00, 91.07, 54.35.

4-amino-N-(pyrimidin-2-yl)benzenesulfonamide (*Sulfadiazine*) (**3w**) 83% yield, White solid. m.p.: 252-256 °C ¹H NMR (500 MHz, DMSO d₆) δ 11.25 (s, 1H), 8.48 (d, *J* = 4.8 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.01 (t, *J* = 4.8 Hz, 1H), 6.59 – 6.54 (m, 2H), 6.00 (s, 2H). ¹³C NMR (126 MHz, DMSO d₆) δ 158.72, 157.72, 153.49, 130.28, 125.37, 119.81, 115.98, 112.59. ¹H NMR and ¹³C NMR Spectra

S26

S32

Г

S34

Desktop 349_ SA 8-F_CDCB

1

Т 1. 1 1 1 1 1 1. 1 -1 1 1 1 1 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 f1 (ppm) 1 1 -130 -150 -170 -190 -210

-2.29

H₃C 3I CF₃

---61.39

77.70 7.768 77.34 7.25 7.25 6.82 6.81

S72

6.70 6.70 6.70 6.71 7.75 7.75 6.75 6.75 6.75 6.75

7.7.7 7.7.7 7.7.65 7.7.65 7.7.65 7.7.65 7.7.37 7.7.37 7.7.37 7.7.37 7.7.37 7.7.37 7.7.15 7.7.

7.72 7.71 7.71 7.71 7.71 7.75 7.45 7.745 7.745 7.709 6.92 6.92 6.92

S102

Г f1 (ppm)

1.1251.12

Figure S4. HRMS spectra of 3a

H₃C

Figure S5. HRMS spectra of 4c

