Supporting Information

Copper(I)iodide coordination polymers with triazole substituted pyridine ligands:

 Photophysical and electrical conductivity propertiesShivendu Mishra ${ }^{\text {a }}$, Dilip Pandey ${ }^{\text {a }}$, Kulbhushan Mishra ${ }^{\text {b }}$, Lydie Viau ${ }^{\text {c }}$ and Abhinav Raghuvanshi*a

${ }^{a}$ Department of Chemistry, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India. Email: r.abhinav@iiti.ac.in
${ }^{b}$ Department of Physics, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India.
${ }^{c}$ Université de Franche-Comté, CNRS, Institut UTINAM, F-25000 Besançon, France

Table of contents

1.0 Synthesis 3
1.1 Synthesis of 2-(1H-1,2,4-triazol-1-yl)pyridine ($\mathbf{L}^{\mathbf{1}}$) 3
1.2 Synthesis of 3-(1H-1,2,4-triazol-1-yl)pyridine ($\mathbf{L}^{\mathbf{2}}$) 4
1.3 Synthesis of 4-(1H-1,2,4-triazol-1-yl)pyridine ($\mathbf{L}^{\mathbf{3}}$) 4
1.4 Synthesis of CP1 5
1.5 Synthesis of CP2 5
1.6 Synthesis of CP3 5
1.7 Fig. S1. HPLC diagram for ligands $\mathrm{L}^{1}-\mathrm{L}^{3}$ in $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}$ V/V (80:20) ratio 6
1.8 Fig. S2. HPLC diagram for ligands $\mathrm{L}^{1}-\mathrm{L}^{3}$ in $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}$ V/V (60:40) ratio 6
X-Ray diffraction data
2.0 Table S1 Crystallographic parameters. 7
2.1 Table S2 Selected bond-lengths of CP1 7
2.2 Table S3 Selected bond-angles of CP1 8
2.3 Table S4 Selected bond-lengths of CP2 8
2.4Table S5 Selected bond-angles of CP2 8
2.5 Table S6 Selected bond-lengths of CP3 9
2.6 Table S7 Selected bond-angles of CP3 9
2.7 Fig. S3 showing packing of CP1 10
2.8 Fig. S4 showing packing of CP2 11
2.9 Fig. S5 showing packing of CP3 12
3.0 Fig.S6. Comparison of experimental and simulated PXRD patterns of CP1 13
3.1 Fig. S7. Comparison of experimental and simulated PXRD patterns of CP2 13
3.2 Fig. S8. Comparison of experimental and simulated PXRD patterns of CP3 14
3.3 Fig. S9. IR of \mathbf{L}^{1} 14
3.4 Fig. S10. IR of CP1 15
3.5 Fig. S11. IR of $\mathbf{L}^{\mathbf{2}}$ 15
3.6 Fig. S12. IR of CP2 16
3.7 Fig. S13. IR of \mathbf{L}^{3} 16
3.8 Fig. S14. IR of CP3 17
3.9 Fig. S15. TGA graph for CP1 17
4.0 Fig. S16. TGA graph for CP2 18
4.1 Fig. S17. TGA graph for CP3 18
4.2 Fig. S18 Emission spectra of CP1 at RT 19
4.3 Fig. S19. Lifetime of CP1 at RT 19
4.4 Fig. S20. Lifetime of CP2 at RT 20
4.5 Fig. S21. Lifetime of CP3 at RT 20
4.6 Fig. S22. I vs V plot for CP1 21
4.7 Fig. S23. I vs V plot for CP2 21
4.8 Fig. S24. I vs V plot for CP3 22
4.9 Table S8 Electrical conductivity comparison. 22

General Information

Materials

All reactions were performed in an oven-dried two-neck round bottom (r.b.) flask Schlenk tube, kept at $80^{\circ} \mathrm{C}$ a day prior to use and the reactions were performed using Schlenk line technique under N_{2} atmosphere. Materials required for the synthesis of ligands such as 2-bromopyridine ($>99 \%$), 3-bromopyridine ($>99 \%$), 4-bromopyridine hydrochloride ($>98 \%$) were bought from Spectrochem (India) and used without further purification. Cesium carbonate ($>99 \%$), CuI ($>99 \%$) were bought from Loba Chemie Pvt. Ltd., CuO ($>98 \%$) and potassium carbonate ($>99 \%$) were purchased from Avra Synthesis Pvt. Ltd. Solvents like dimethyl formamide (DMF), dimethyl sulfoxide (L.R. grade) were bought from Advent Chembio Pvt. Ltd., acetonitrile HPLC grade from Finar Chemicals Pvt. Ltd. and deuterated solvents DMSO-d ${ }_{6}$, CDCl_{3} with 0.03 \% TMS as an internal standard were from Eurisotop.

Characterization methods

A Bruker Avance (III) spectrometer operating at 400 MHz was used for the characterization of synthesized ligands. The ligand purity was confirmed by high-performance liquid chromatography (HPLC) using Waters HPLC having 2298 PDA detector along with flex inject injector. Single crystal X-Ray data for structural analysis were obtained on dual source Super Nova CCD, Agilent Technologies (Oxford Diffraction) System using Mo-K $\alpha=0.71073$ at 293 K . The structure solution was obtained by using OLEX software and the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares. ${ }^{1,2}$ Fluorescence quantum yield of the solid samples were measured using an integral sphere set up coupled with a Jobin Yvon Horiba Model Fluorolog-3-21 (Xenon lamp 450 W). The crystallinity and phase purity measurements of all three coordination polymers were performed on a Rigaku Smart X-ray diffractometer with monochromatic $\mathrm{Cu} \mathrm{K} \alpha$ $(0.1540 \mathrm{~nm})$ radiation in 2θ range of 5-50 degrees. Bruker Alpha II spectrophotometer was used for FT-IR and Keithley model 6517B electrometer for conductivity experiments. The thermogravimetric analysis was performed on Mettler Toledo TGA/DSC 1 star e- system in the temperature range of $30-800^{\circ} \mathrm{C}$.

Synthetic procedure for $L^{1}, L^{2}, L^{3}, ~ C P 1, ~ C P 2 ~ a n d ~ C P 3 ~$

Synthesis of $\mathbf{L}^{\mathbf{1}}$. 2-(1H-1,2,4-triazol-1-yl)pyridine (L^{1}) was synthesized by following a reported procedure. ${ }^{3}$ To an oven-dried two-neck round bottom flask (r.b.), were added $1 \mathrm{H}-1,2,4$-triazole ($4.8 \mathrm{mmol}, 331.5 \mathrm{mg}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.138 \mathrm{mmol}, 2 \mathrm{~g}), \mathrm{CuI}(0.76 \mathrm{mmol}$, 145 mg) and 2-bromopyridine ($4 \mathrm{mmol}, 395 \mu \mathrm{~L}$). The resulting mixture was stirred and heated at $140^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was cooled down to room temperature, diluted with ethyl acetate and passed through a celite pad. The product was washed with a brine solution and water. The final product was passed through column charged with silica by using hexane : ethyl acetate ($2: 3$ by volume) as eluent, to get the desired product in 87% yield. The sample purity was analysed using acetonitrile:deionized water in different (V/V) ratios in isocratic mode (Fig. S1-S2). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm}) 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$) $), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=6.4$ Hz, 2 H), 7.31 (s, 1H).

Synthesis of \mathbf{L}^{2}. 3-(1H-1,2,4-triazol-1-yl)pyridine $\left(\mathrm{L}^{2}\right)$ was synthesized with a slight modification from the reported literature procedure. ${ }^{4}$ To a dried two-neck r.b. charged with $\mathrm{N}_{2}, 1 \mathrm{H}-1,2,4-$ triazole ($3.79 \mathrm{mmoL}, 262.59 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.79 \mathrm{mmol}, 525 \mathrm{mg}$), CuO $(0.379 \mathrm{mmol}, 30.2 \mathrm{mg})$ and 3-bromopyridine ($3.164 \mathrm{mmol}, 307.7 \mu \mathrm{~L}$) were added and heated at $150{ }^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was diluted with dichloromethane (DCM) and washed with brine solution and water. After drying, the solvent was evaporated under vacuum. The obtained product was recrystallized with DCM-hexane to get the pure product in 74% yield asl off-white solid. The sample purity was analysed using HPLC using acetonitrile solvent with deionized water in different (V/V) ratios in isocratic mode (Fig. S1-S2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.64$ (d, $J=4.5,1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 1$ H). ${ }^{5}$

Synthesis of \mathbf{L}^{3}. 4-(1H-1,2,4-triazol-1-yl)pyridine $\left(\mathrm{L}^{3}\right)$ was synthesized with a slight modification from the reported literature procedure. ${ }^{3}$ First, in a dried two neck r.b. flask, was added 4-bromopyridine $\cdot \mathrm{HCl}(10 \mathrm{mmol}, 1945 \mathrm{mg})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(19.82 \mathrm{mmol}, 6.46$ g). The mixture was heated at $140^{\circ} \mathrm{C}$ for 12 h to get 4 -bromopyridine. After that, $1 \mathrm{H}-$ 1,2,4-triazole ($14 \mathrm{mmoL}, 967 \mathrm{mg}$) and $\mathrm{CuI}(0.9 \mathrm{mmol}, 180 \mathrm{mg})$ were added and the resulting mixture was stirred for another 48 hours. The reaction was cooled down to room temperature, diluted with DCM and filtered on celite pad. The product was washed with brine and the solvent was removed under vacuum. The sample purity was analysed using HPLC using acetonitrile solvent with deionized water in different (V/V)
ratios in isocratic mode (Fig. S1-S2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 9.60 ($\mathrm{s}, 1$ H), $8.84-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=5.4,2 \mathrm{H}) .{ }^{5}$

Synthesis of 1D $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{~L}^{1}\right)_{2}\right]_{n} \mathbf{C P 1}$. To a solution of $\mathrm{CuI}(65 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added $\mathbf{L}^{1}(50 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. A white precipitate was observed within 1-2 minutes. The mixture was further stirred for 45 minutes to complete the reaction. The precipitate was filtered and washed with dichloromethane and $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) 2-3 times and then dried over the vacuum. Overall yield $=80 \%$. A small amount of CP1, about 20 mg , was dissolved in hot $\mathrm{CH}_{3} \mathrm{CN}$ and left to grow crystals. After a week, colourless needle-shaped crystals suitable for SCXRD were obtained.

Synthesis of 1D $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{~L}^{2}\right)_{2}\right]_{n} \mathbf{C P 2}$. CP2 was prepared in a manner like CP1 using $\mathrm{L}^{\mathbf{2}}$, giving an overall yield of 49%. A small amount of CP2 (20mg) was dissolved in hot $\mathrm{CH}_{3} \mathrm{CN}$ and left to grow crystals. After a few days, yellow crystals appeared compatible with singlecrystal X-ray diffraction.

Synthesis of 1D $\left[\mathbf{C u l}\left(\mathrm{L}^{3}\right)\right]_{\mathrm{n}} \mathbf{C P 3}$. CP3 was prepared following the same procedure as CP1 except $\mathbf{L}^{\mathbf{3}}$, giving a yellow powder with an overall yield of up to 60%. Crystals of CP3 were obtained by layering an aqueous solution of $\mathrm{KI}, \mathrm{CuI}$ and an ethanol solution of ligand [4-(1H-1,2,4triazol-1-yl)pyridine] with $\mathrm{CH}_{3} \mathrm{CN}$ buffer in the middle. Yellow rod-like crystals suitable for SCXRD were obtained after 7-10 days.

Fig. S1. Sample purity, characterized by HPLC in isocratic mode using ACN: $\mathrm{H}_{2} \mathrm{O}$ (80:20) V/V ratio.

Fig. S2. Sample purity, characterized by HPLC in isocratic mode using ACN: $\mathrm{H}_{2} \mathrm{O}$ (60:20) V/V ratio.

Table S1. Crystal and refinement data table of CP1, CP2 and CP3.

	CP1 (2Tz)	CP2 (3Tz)	CP3 (4Tz)
CCDC No.	2262590	2262602	2262603
Empirical formula	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CuIN}_{4}$	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CuIN}_{4}$	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CuIN}_{4}$
Formula weight	336.60	336.60	336.60
Temperature (K)	293(2)	300(2)	298(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2{ }_{1} /{ }_{c}$	P^{1}	$P 2{ }_{1} /{ }_{c}$
Z	4	2	4
a (A)	4.1874(2)	7.8402(4)	4.31310(10)
b (\AA)	20.8052(11)	8.1337(5)	16.4341(6)
c (\AA)	11.0045(8)	9.0972(4)	12.8515(4)
$\alpha\left({ }^{\circ}\right)$	90	107.503(4)	90
$\beta\left({ }^{\circ}\right)$	94.281(5)	101.344(4)	97.980(3)
$\gamma\left({ }^{\circ}\right)$	90	113.872(6)	90
$\mathrm{V}\left(\AA^{3}\right)$	956.03(10)	471.01(5)	902.12(5)
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.339	2.373	2.478
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	58.41	56.996	58.342
R1, wR2 [I>2 ${ }^{\text {(I) }}$]	0.0563, 0.1538	0.0393, 0.0937	0.0292, 0.0656
$\mathrm{R} 1, \mathrm{wR} 2$ [all data]	0.0714, 0.1627	0.0540, 0.1010	0.0351, 0.0698
Goodness-of-fit on F^{2}	1.099	1.076	1.056
No. of reflection used $[>2 \sigma(\mathrm{I})]$	$\begin{aligned} & 3701\left[\mathrm{R}_{\mathrm{int}}=\right. \\ & 0.0502] \end{aligned}$	$\begin{aligned} & 2300\left[\mathrm{R}_{\mathrm{int}}=\right. \\ & 0.0661] \end{aligned}$	$2236\left[\mathrm{R}_{\text {int }}=0.0464\right]$

Table S2. Bond-lengths (\AA) of CP1.

$\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	$2.900(2)$	N2-C7	$1.345(12)$
$\mathrm{Cu} 1-\mathrm{Cu} 1^{2}$	$2.750(3)$	N3-C6	$1.306(13)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.038(7)$	N4-C6	$1.359(11)$
$\mathrm{Cu} 1-\mathrm{I} 1$	$2.6466(15)$	N4-C7	$1.296(12)$
$\mathrm{Cu} 1-\mathrm{I} 1^{1}$	$2.6538(13)$	$\mathrm{C} 1-\mathrm{C} 2$	1.3900
$\mathrm{Cu} 1^{2}-\mathrm{I} 1$	$2.6639(14)$	$\mathrm{C} 2-\mathrm{C} 3$	1.3900
$\mathrm{~N} 1-\mathrm{C} 1$	1.3900	$\mathrm{C} 3-\mathrm{C} 4$	1.3900
$\mathrm{~N} 1-\mathrm{C} 5$	1.3900	$\mathrm{C} 4-\mathrm{C} 5$	1.3900
$\mathrm{~N} 2-\mathrm{N} 3$	$1.352(11)$	$\mathrm{I} 1-\mathrm{Cu} 1^{1}$	$2.6538(13)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.355(8)$	${\mathrm{I} 1-\mathrm{Cu} 1^{2}}^{2}$	$2.6639(14)$

Where, symmetry operation (1) $-x, 1-y,-z,(2)-x, 1-y,-z$

Table S3. Bond angles (${ }^{\circ}$) for CP1.

$\mathrm{Cu} 1-\mathrm{I1}-\mathrm{Cu} 1^{1}$	$62.51(5)$	N3-N2-C1	$119.6(7)$
$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 1^{2}$	$66.20(5)$	C7-N2-N3	$110.3(8)$
$\mathrm{Cu}^{1}-\mathrm{I} 1-\mathrm{Cu} 1^{2}$	$103.89(5)$	C7-N2-C1	$130.1(8)$

I1-Cu1-I1 ${ }^{1}$	117.49 (5)	C6-N3-N2	101.9 (8)
I1-Cu1-I1 ${ }^{2}$	113.80 (5)	C6-N4-Cul	126.9 (6)
I1 ${ }^{1}-\mathrm{Cu} 1-\mathrm{I} 1^{2}$	103.89 (5)	C7-N4-Cu1	129.3 (6)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	58.88 (5)	C7-N4-C6	103.8 (8)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{2}$	57.19 (4)	N2-C1-N1	115.5 (5)
$112^{2}-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	128.32 (7)	N2-C1-C2	124.5 (5)
$\mathrm{I1}^{2}-\mathrm{Cu} 1-\mathrm{Cu} 1^{2}$	56.61 (4)	N1-C1-C2	120.0
$\mathrm{I}^{1}-\mathrm{Cu} 1-\mathrm{Cu} 1^{2}$	129.93 (7)	C1-N1-C5	120.0
$\mathrm{I}^{1}-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	58.62 (5)	C4-C5-N1	120.0
$\mathrm{Cu}{ }^{1}-\mathrm{Cu} 1-\mathrm{Cu}{ }^{2}$	95.62 (7)	C3-C4-C5	120.0
N4-Cu1-I1	104.6 (2)	C4-C3-C2	120.0
N4-Cu1-I1 ${ }^{2}$	108.0 (2)	C3-C2-C1	120.0
N4-Cu1-I1 ${ }^{1}$	108.8 (2)	N3-C6-N4	114.7 (9)
N4-Cu1-Cu1 ${ }^{2}$	120.9 (2)	N4-C7-N2	109.3 (8)
N4-Cu1-Cu1 ${ }^{1}$	123.6 (2)		

Symmetry operation code (1) $-x, 1-y,-z(2) 1-x, 1-y,-z$
Table S4. Bond-lengths (\AA) of CP2.

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.6848(7)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.329(6)$
$\mathrm{I} 1-\mathrm{Cu} 1^{1}$	$2.7381(8)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.321(7)$
$\mathrm{Cu} 1-\mathrm{I} 1$	$2.7381(8)$	$\mathrm{N} 4-\mathrm{Cu} 1^{3}$	$2.023(4)$
$\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	$2.8478(14)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.337(7)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.021(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.375(6)$
$\mathrm{Cu} 1-\mathrm{N} 4$		$\mathrm{C} 2-\mathrm{C} 3$	$1.390(8)$
$\mathrm{N} 1-\mathrm{C} 1$	$2.023(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.383(7)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.343(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.378(7)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.350(6)$	$\mathrm{N} 4-\mathrm{C} 7$	$1.307(6)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.372(6)$		

Where, symmetry operation (1) $1-x, 1-y,-z(2)-1+x,-1+y,-1+z(3) 1+x, 1+y, 1+z$

Table S5. Bond angles (${ }^{\circ}$) for CP2.

Cu1-I1-Cu1 ${ }^{1}$	63.35 (3)	C7-N2-N3	108.9 (4)
I1- Cu1-I1 ${ }^{1}$	116.66 (3)	C7-N2-C4	131.0 (4)
$\mathrm{I}_{1}{ }^{1}-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	57.42 (2)	C6-N3-N2	101.7 (4)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	59.24 (2)	C6-N4-Cu1 ${ }^{3}$	123.7 (3)
N1-Cu1-I1 ${ }^{1}$	99.94 (12)	C7-N4- Cu1 ${ }^{3}$	130.8 (4)
N1-Cu1-I1	107.02 (12)	C7-N4-C6	103.0 (4)
N1-Cu1-Cu1 ${ }^{1}$	116.23 (12)	N1-C1-C2	123.2 (4)
N1-Cu1-N4 ${ }^{2}$	130.07 (17)	C1-C2-C3	119.6 (5)
N42- Cu1-I1	104.33 (12)	C4-C3-C2	117.1 (5)
N4 ${ }^{2}-\mathrm{Cu} 1-\mathrm{I} 1^{1}$	99.46 (12)	C3-C4-N2	120.1 (5)
N4 ${ }^{2}-\mathrm{Cu} 1-\mathrm{Cu} 1^{1}$	113.04 (13)	C5-C4-N2	119.3 (4)
C1-N1-Cu1	121.0 (3)	C5-C4-C3	120.6 (4)
C1-N1-C5	117.4 (4)	N1-C5-C4	122.0 (4)
C5-N1-Cu1	121.1 (3)	N3-C6-N4	115.3 (5)
N3-N2-C4	120.1 (4)	N4-C7-N2	111.2 (4)

Symmetry operation code (1) $1-x, 1-y,-z(2)-1+x,-1+y,-1+z(3) 1+x, 1+y, 1+z$

Table S6. Bond-lengths (\AA) of CP3.

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.6478(5)$	N2-C3	$1.420(4)$
$\mathrm{I} 1-\mathrm{Cu} 1^{1}$	$2.6796(5)$	N2-C6	$1.337(5)$
$\mathrm{Cu} 1-\mathrm{I}^{2}$	$2.6796(5)$	N3-C7	$1.313(5)$
$\mathrm{Cu}-\mathrm{N} 1^{3}$	$2.042(3)$	N4-C6	$1.324(4)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.043(3)$	N4-C7	$1.366(5)$
$\mathrm{N} 1-\mathrm{Cu} 1^{4}$	$2.042(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.373(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.336(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(4)$
N1-C5	$1.331(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.366(5)$
N2- N3	$1.368(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(5)$

Where, symmetry operation (1) $-1+x,+y,+z(2) 1+x,+y,+z(3) 1-x, 1 / 2+y, 1 / 2-z(4) 1-x,-1 / 2+y$, 1/2-z

Table S7. Bond angles (${ }^{\circ}$) for CP3.

$\mathrm{Cu} 1-\mathrm{I1}-\mathrm{Cu} 1^{1}$	108.115 (17)	C7-N3-N2	102.6 (3)
I1- Cu1-I1 ${ }^{2}$	108.115 (17)	C6-N4-Cu1	133.2 (3)
$\mathrm{N1}^{3}-\mathrm{Cu} 1-\mathrm{I} 1^{2}$	102.69 (8)	C6-N4-C7	102.4 (3)
N1 ${ }^{3}-\mathrm{Cu} 1-\mathrm{I} 1$	111.44 (8)	C7-N4- Cu1	124.3 (2)
N13 ${ }^{3}$ Cu1-N4	113.46 (12)	N1-C1-C2	124.2 (3)
N4-Cu1-I1	106.83 (8)	C1-C2-C3	117.9 (3)
N4- Cu1-I1 ${ }^{2}$	114.27 (8)	C2-C3-N2	120.8 (3)
C1-N1-Cu1 ${ }^{4}$	124.3 (2)	C4-C3-N2	119.8 (3)
C5-N1-Cu1 ${ }^{4}$	119.1 (3)	C4-C3-C2	119.4 (3)
C5-N1-C1	116.2 (3)	C3-C4-C5	118.0 (3)
N3-N2-C3	119.8 (3)	N1-C5-C4	124.4 (4)
C6-N2-N3	109.3 (3)	N4-C6-N2	110.8 (3)
C6-N2-C3	130.8 (3)	N3-C7-N4	114.9 (3)

Symmetry operation code (1) $-1+x,+y,+z(2) 1+x,+y,+z(3) 1-x, 1 / 2+y, 1 / 2-z(4) 1-x,-1 / 2+y$, 1/2-z

Fig. S3. Packing of CP1 along a axis and dashed lines showing C-H---I and C-H---N interactions present between the layers.

Fig. S4. Packing of CP2 showing C-H---N, C-H---I interactions along b axis.

Fig. S5. Packing of CP3 showing C-H---I interactions along a axis.

Fig. S6. Comparison of experimental and simulated PXRD patterns of CP1.

Fig. S7. Comparison of experimental and simulated PXRD patterns of CP2.

Fig. S8. Comparison of experimental and simulated PXRD patterns of CP3.

Fig. S9. IR spectrum of $\mathbf{L}^{\mathbf{1}}$.

Fig. S10. IR spectrum of CP1.

Fig. S11. IR spectrum of \mathbf{L}^{2}.

Fig. S12. IR spectrum of CP2.

Fig. S13. IR spectrum of \mathbf{L}^{3}.

Fig. S14. IR spectrum of CP3.

Fig. S15. TGA graph for CP1.

Fig. S16. TGA graph for CP2.

Fig. S17. TGA graph for CP3.

Fig. S18. Emission spectrum of CP1 at R.T.

Fig. S19. Lifetime of CP1 at R.T.

Fig. S20. Lifetime of CP2 at R.T.

Fig. S21. Lifetime of CP3 at R.T.

Fig. S22. I vs V plot for CP1.

Fig. S23. I $v s$ V plot for CP2.

Fig. S24. I vs V plot for CP3.

Table S8. Comparison of conductivities values for different polymers with $\mathrm{Cu}_{2} \mathrm{I}_{2}$ core.

Coordination polymers with $\mathrm{Cu}_{2} \mathrm{I}_{2}$ chain	Conductivities at R.T. (S/cm)	References
$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{Apyz})\right]_{\mathrm{n}}$	8.6×10^{-7}	6
$\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right]_{\mathrm{n}}$	1.1×10^{-8}	7
$[\mathrm{CuI}(\mathrm{EtIN})]_{\mathrm{n}},[\mathrm{CuI}(\mathrm{MeIN})]_{\mathrm{n}}$	$2 \times 10^{-6}, 4 \times 10^{-7}$	8
$[\mathrm{Cu}(\mathrm{aClpym})]_{\mathrm{n}}$	1.1×10^{-7}	9
$\left[\mathrm{Cu} \mathrm{I}_{2}(\mathrm{Fpyz})\right]_{\mathrm{n}}$	2.0×10^{-5}	10
$[\mathrm{CuI}(\mathrm{HIN})]_{\mathrm{n}},[\mathrm{CuI}(\mathrm{Cl}-\mathrm{HIN})]_{\mathrm{n}}$	$3.0 \times 10^{-3}, 3.0 \times 10^{-5}$	11
$\left[\mathrm{Cu} \mathrm{I}_{2}(\mathrm{Fpyz})\right]_{\mathrm{n}}$	3.1×10^{-5}	12
$[\mathrm{Cu}(\mathrm{Cl}-\mathrm{HIN}) \mathrm{I}]_{n}$	3.0×10^{-5}	13
CP 1	8.85×10^{-7}	This work

References

1 G. M. Sheldrick, Acta Crystallogr. A: Found. Adv., 2015, 71, 3-8.
2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
3 N. Kommu, V. D. Ghule, A. S. Kumar and A. K. Sahoo, Asian J. Chem., 2014, 9, 166178.

4 C.-L. Wang, C.-Q. Song, W.-H. Shen, Y.-Y. Qi, Y. Xue, Y. C. Shi, H. Yu and L. Feng, Catal. Sci. Technol., 2019, 9, 1769-1773.
5 N. V. Shevchuk, K. Liubchak, K. G. Nazarenko, A. A. Yurchenko, D. M. Volochnyuk, O. O. Grygorenko and A. A. Tolmachev, Synthesis, 2012, 44, 2041-2048.

6 J. Conesa-Egea, J. Gallardo-Martínez, S. Delgado, J. I. Martínez, J. Gonzalez-Platas, V. Fernández-Moreira, U. R. Rodríguez-Mendoza, P. Ocón, F. Zamora and P. AmoOchoa, Small, 2017, 13, 1700965.
7 P. Amo-Ochoa, K. Hassanein, C. J. Gómez-García, S. Benmansour, J. Perles, O. Castillo, J. I. Martínez, P. Ocón and F. Zamora, Chem. Commun., 2015, 51, 1430614309.

8 K. Hassanein, J. Conesa-Egea, S. Delgado, O. Castillo, S. Benmansour, J. I. Martínez, G. Abellán, C. J. Gómez-García, F. Zamora and P. Amo-Ochoa, Chem. Eur. J., 2015, 21, 17282-17292.
9 J. López, M. Murillo, G. Lifante-Pedrola, E. Cantelar, J. Gonzalez-Platas, U. R. Rodríguez-Mendoza and P. Amo-Ochoa, CrystEngComm., 2022, 24, 341-349.
10 M. Murillo, J. Álvarez-Conde, R. Wannemacher, J. Cabanillas-González, J. GonzálezPlatas, U. R. Rodríguez-Mendoza, A. Liang, R. Turnbull, D. Errandonea, J. I. Martínez and P. Amo-Ochoa, J. Mater. Chem. C, 2022, 10, 18004-18016.
11 J. Conesa-Egea, Carlos. D. Redondo, J. I. Martínez, C. J. Gómez-García, Ó. Castillo, F. Zamora and P. Amo-Ochoa, Inorg. Chem., 2018, 57, 7568-7577.
12 M. Murillo, R. Wannemacher, J. Cabanillas-González, U. R. Rodríguez-Mendoza, J. Gonzalez-Platas, A. Liang, R. Turnbull, D. Errandonea, G. Lifante-Pedrola, A. GarcíaHernán, J. I. Martínez and P. Amo-Ochoa, Inorg. Chem., 2023, 62, 10928-10939.
13 J. Conesa-Egea, Carlos. D. Redondo, J. I. Martínez, C. J. Gómez-García, Ó. Castillo, F. Zamora and P. Amo-Ochoa, Inorg. Chem., 2018, 57, 7568-7577.

