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Experimental Section

General Information and Materials

All the reagents, solvents, starting materials, different metal salts and amino acids were
procured from commercial purveyors and were used as received. All were of reagent grade.
The solvents used were HPLC grade. For N.M.R. analyses, deuterated solvent [(CDs),SO]

was purchased from Sigma-Aldrich.

The UV-Visible absorption spectra were archived on a Perkin-Elmer Lamda-750 UV-Vis
spectrophotometer using 10 mm path length quartz cuvettes in 250-700 nm wavelengths.

Baseline correction was applied for all spectra.

Fluorescence emission spectra were documented on a Horiba Fluoromax-4
spectrofluorometer using a 1 cm path length of quartz cuvettes having a slit width of 3 nm at

298 K.

High-resolution mass spectrometry of Ly, L, , L3, L;-Hg?" and L{-GSH was carried out on a

Waters Q-ToF Premier mass spectrometer.

The solution-phase 'H and '3C Nuclear Magnetic Resonance spectra were recorded at 500
MHz using a Bruker Advances SO0ONMR instrument. The chemical shifts were reported in
parts per million (ppm) with the deuterated solvents. The following abbreviations are used to
delineate spin multiplicities in '"H NMR spectra: s = singlet; d = doublet; t = triplet; q=

quartet, m = multiplet.

Synthetic procedure of L;, L, and L3

To a stirring solution (10 mmol, 1.96 g) of 2,7diaminofluorene in methanol (10mL), 4-
diethylamino salicaldehyde (25 mmol, 4.8 g) in 10mL methanol was added and refluxed
overnight. Condensation of these two reactants resulted a Schiff base product, filtered and
collected after frequent washing with cold methanol. The gradual addition of NaBH, in ice-
cold condition reduced the Schiff base in its methanolic solution. After the reaction, water
was added dropwise to the reaction mixture and extracted with CH,Cl,. The organic phase
was separated and concentrated under reduced pressure to procure the dark brown product L.
Similar synthetic procedure was followed introducing salicaldehyde (25 mmol, 2.6g) and 4-
dimethylamino benzaldehyde (25 mmol, 3.72 g) respectively to procure L, and L3. Ly, L, and
L; were well characterized by ESI-MS, 'H NMR, '3C NMR, FT-IR analysis.
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Characterization data of L;: Calculated Yield =75%. ESI-MS (positive mode, m/z)
calculated for C35sHy4,N4O, [M+H] *: 551.3580. Found: 551.3582. '"H NMR of L; (500 MHz,
DMSO-dg, 6 ppm): 8.75 (s, 1H), 7.23-7.25 (d, 1H), 6.76-6.79 (d, 1H), 6.68 (s, 1H), 6.47-
6.49(d, 1H), 6.15 (s, 1H), 6.02-6.04 (d, 1H), 4.89 (s, 2H), 3.57 (s, 1H), 3.18-3.24 (m, 4H),
1.02-1.06(t, 6H). 3C NMR (150 MHz, DMSO-ds, 6 ppm): 156.12, 147.15, 146.44, 143.17,
131.28, 131.21, 130.99, 118.58, 112.73, 111.05, 110.72, 103.46, 99.48, 43.99, 36.29, 15.17,
12.68. FT-IR (KBr pellets, cm-1): 3367 (O-H), 3307 (N-H), 2963 (Aromatic C-H), 1619( N-
H bending), 1466 (Aromatic ring C=C stretching), 1256 (C-N stretch), 804 (N-H wagging).
Characterization data of L,: Calculated Yield =73%. ESI-MS (positive mode, m/z)
calculated for Cy7H,4N,O, [M+H] *: 409.1916. Found: 409.1957. 'H NMR of L; (500 MHz,
DMSO-dg, 6 ppm): 9.51 (s, 1H), 7.26-7.28 (d, 1H), 7.19-7.21 (d, 1H), 7.01-7.05 (t, 1H), 6.80-
6.82(d, 1H), 6.73 (s, 1H), 6.70-6.71 (d, 1H), 6.50 (s, 1H), 5.84 (s, 1H), 4.20 (s, 2H), 3.57(s,
1H). BC NMR (150 MHz, DMSO-ds, & ppm): 155.44, 143.53, 132.83, 128.67, 127.87,
120.01, 119.53, 119.21, 118.95, 111.80, 116.98, 115.26, 31.74, 29.47. FT-IR (KBr pellets,
cm-1): 3283 (O-H), 2920 (N-H), 2851 (Aromatic C-H), 1614( N-H bending), 1461 (Aromatic
ring C=C stretching), 1245(C-N stretch), 813 (N-H wagging).

Characterization data of Lj;: Calculated Yield =75%. ESI-MS (positive mode, m/z)
calculated for C;H34Ny4 [M] *: 462.2874 Found: 462.2880. 'H NMR of L; (500 MHz,
DMSO-d¢, & ppm): 7.62-7.65 (d, 1H), 7.21-7.22 (d, 1H), 7.13 (s, 1H), 6.73-6.75 (d, 1H),
6.66(s, 1H), 6.62-6.64 (d, 1H), 6.46 (s, 1H), 4.09 (s, 1H), 2.98 (s, 3H. 3C NMR (150 MHz,
DMSO-dg, 6 ppm): 154.68, 142.92, 143.48, 128.55, 124.88, 118.92, 112.91, 111.50, 109.63,
46.95, 40.70, 36.54. FT-IR (KBr pellets, cm-1): 2920 (N-H), 2850 (Aromatic C-H), 1607( N-
H bending), 1464 (Aromatic ring C=C stretching), 1226 (C-N stretch), 805 (N-H wagging).

General Procedure for UV-VIS and Fluorescence Spectroscopic Studies

Stock solutions of different metals and amino acid solutions (50 x 10-3mol L-!) were prepared
in water. Stock solution of Ly, L, and Lz (1% 10*mol L) were prepared in DMSO. For
fluorescence selectivity experiments, the solution of probes was then diluted to 2 x 10-% mol
L' with Millipore water by taking only 4uL of stock solution and making the final volume 2
mL. In fluorescence titration experiments, a quartz optical cell of 10mm pathlength was filled
with a 2.0 mL solution of L; to which various analytes were gradually added using a
micropipette. For fluorescence measurements, L; was excited at 315 nm, and emission was

procured from 335 nm to 650 nm.



Estimation of the Apparent Binding Constant
The ligand L; with an effective concentration of 2uM was used for the fluorescence
emission titration studies with GSH solution in aqueous medium. The effective
GSH concentrations were varied between 0 and 20 equivalent for this titration. The apparent
binding constants for the formation of the respective complexes were evaluated using the
Benesi-Hildebrand (B-H) plot (Equation 1). -2

V(1) = VK (max—To) C} + UlIas—o) (1)
Iy is the emission intensity of L; at A =384 nm, I is the observed emission intensity at the
particular wavelength in the presence of a certain concentration of the analyte (C), Iax 18
the maximum emission intensity value that was obtained at A =420 nm during titration with
varying analyte concentration, K is the apparent binding constant (M) and was determined
from the slope of the linear plot, and C is the concentration of the GSH added during titration
studies.
Detection Limit
The detection limit was evaluated based on the fluorescence titration changes for Hg>* and
GSH independently. Ly's fluorescence emission spectrum was computed ten times, and the
standard deviation of the blank measurement was obtained. The fluorescence emission at 414
nm and 420 nm was plotted as a concentration of Hg?>* and GSH to gain the slope. The
detection limits were calculated using the following equation:

Detection limit = 30/k (2)
where o is the standard deviation of blank measurement, and k is the slope between the
fluorescence emission intensity versus [analyte]. The conversion to ppb unit was done

considering Mol. Wt. of mercury 200.59 gmol! and GSH 307.32 gmol-'.

Field Emission Scanning Electron Microscope (FESEM) Studies

Morphology of L;, Li-Hg?* complex was imaged separately using Gemini 300 FESEM (Carl
Zeiss) instrument. The samples were prepared by drop-casting (2uM), the DMSO/Water
mixture on Al-foil wrapped coverslip, then coated with Au and dried under vacuum before

the imaging.

Fluorescence Microscopy
The freshly prepared samples of L; (2 uM), L;-Hg?" complex (Probe 1 mixed with 50
equivalents of mercury(Il) salt) and L1-GSH complex (Probe 1 mixed with 50 equivalents of

GSH) glass slide and were entirely dried at room temperature, followed by image acquisition
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using a Fluorescence microscope (Eclipse Ti-U, Nikon, U.S.A.) with a blue filter. In plant
tissue and gram seed imaging, leaf, stem and cotyledons of gram seed were dissected. Then
the 30pum sections were sliced and placed on a glass slide to capture images by fluorescence

microscope.

Measurement of fluorescence lifetime

Fluorescence lifetimes were evaluated utilizing the time-correlated single-photon counting
(TCSPC) method in the Edinburgh Instrument Life-Spec II spectrometer. The samples (L,
L;-Hg?" and L;-GSH) were excited at 315 nm keeping the emission wavelength at 414 nm
and 420 nm using a pulsed diode laser. The fluorescence decays were surveyed by the re-

convolution method using the FAST software provided by Edinburgh Instruments.

Photoluminescence Quantum Yield
We had pursued the Petite Integrating Sphere method to determine the quantum yield by
Horiba Jobin Yvon Fluoromax-4 Spectrofluorometer. It was determined in 100% aqueous
medium for L; (2 uM), L;-Hg?" complex (L; mixed with 50 equivalents of Hg?") and L;-
GSH complex (L; mixed with 50 equivalents of GSH) keeping A, at 315 nm. To determine
the quantum yield, the equation we employed was (as per the instruction written on the
official website of Horiba),

® = [(E.— Ey) / (Lo~ Lo)] 3)
Where E. = Emission of the sample, E, = Emission of the blank, L. = Scatter of the sample &
L, = Scatter of the blank.

Theoretical investigations (DFT study)

DFT optimizations of L; , L;-GSH and L;-Hg?" complex were accomplished with the
exchange correlation function B3LYP-D3(http://www.gaussian.com/g_tech/g_ur/k dft.htm)
and the basis set 6-31G (d,p) for C,H, N and O atoms and LANL2DZ for Hg atoms
incorporating in the Gaussian 09 package.? TDDFT computations were then carried out based
on the optimized ground state geometries using the Time dependent Self-Consistent Field

(TD-SCF) method.
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Figure S1: ESI-MS spectra of L; in 1:1 water-acetonitrile in positive ionization mode.
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Figure S4: FTIR spectrum of L; recorded in KBr pellet at room temperature.
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Figure S5: ESI-MS spectra of L, in 1:1 water-acetonitrile in positive ionization mode.

@ SSREESSRINREEE 2 a 5 7[?;
£ o ol el ol S ol Y= V- RN RV= V¥ wi < e i
| GNP e | I I
c d
. & HN .O NH
b
i i a
h
He HO

—
o

2.08—=

1.00-I F—— (1]
Q.
i ~
o
- .95 ’_7
0.80-1 ?f‘
IS

ppm o5 9.0 85 80 75 70 65 6.0 55 50 45 40 35 30 25

Figure S6: 'H NMR of L, in DMSO-ds at room temperature.
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Figure S7: 13C NMR of L, in DMSO-dg at room temperature.
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Figure S8: FTIR spectrum of L, recorded in KBr pellet at room temperature.
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Figure S9: ESI-MS spectra of L3 in 1:1 water-acetonitrile in positive ionization mode.
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Figure S12: FTIR spectrum of L3 recorded in KBr pellet at room temperature.
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Figure S13: (a) UV-visible spectra of L;, L, and L3 in aqueous medium at room temperature.
(b) Fluorescence emission spectra of L, L, and L3 in aqueous medium at room temperature
(Aex =315 nm, slit=3nm / 3nm).
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Figure S14: (a) Fluorescence spectral changes of L; with increasing water content in
acetonitrile solution (Aex = 315 nm, slit = 3nm / 3nm).(b) Fluorescence spectral changes of L
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Figure S15: (a) Non-linear equation for titration of L; with Hg?" in aqueous medium. (b)
Job's plot for determining L;'s stoichiometry with Hg?" (1:2 host-guest complex).
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Figure S16: (a) Fluorescence emission intensity of L; at 414 nm vs. Hg>" concentration to
calculate the limit of detection (LOD). (b) Fluorescence response of L; (2.0 uM) to various

analytes (1= CI-, 2= Br’, 3=, 4= F-, 5= OH-, 6= H,PO,, 7= SO,*, 8=HSOy, 9=cysteine, 10=
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Table S1: Fluorescence lifetime values of L; (2.0 uM) and L;-Hg?" in aqueous medium.

Sample B1 AB1 B2 AB2 a, Aa] a, A32 T, A‘rl T, A‘t2 <> L
(ns)
L] 0.05 | 0.0005| 0.02 [0.0001| 0.82 | 0.01 | 0.17| 0.01 | 1.14 | 0.01 | 528 | 0.006| 1.87 | 1.0
2+
L;**Hg 0.03 | 0.0004| 0.01 [0.0002] 027 | 007 ] 0.73| 0.07 | 142 |0.02 | 6.85 | 0.008| 537 | 1.0

Table S2: Rate constants for radiative and non-radiative decays, average lifetimes of L (2.0
uM) and L;-Hg?" in aqueous medium.

Sample K.(S™ K, (S") | Slower decay | Faster decay | Average
component component lifetime(ns)
L, 0.00069 x 0.53 x 10° 1.14 5.28 1.87
10°
L; + Hg?" | 0.009 x 10° 0.18 x 10° 1.42 6.85 5.37
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Figure S17: Chemical structures of different amino acids used in our study.
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the Benesi-Hildebrand method. (b) Job's plot for determining L;'s stoichiometry with GSH
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Figure S19: (a) Fluorescence emission intensity of L; at 420 nm vs. GSH concentration to
calculate the limit of detection (LOD). (b) Fluorescence response of L; (2.0 uM) to various
analytes (1=CI-, 2=Br", 3=I,, 4=F-, 5=NO;", 6=H,PO4, 7=HCO5", 8=HSO,, 9=NO,", 10=
Hg?*, 11=Cu?" and 12=Zn*")

Table S3: Fluorescence lifetime values of L (2.0 pM) and L;-GSH in aqueous medium.

Sample Bl .f!n.BI B2 .IA.B2 a, |Aa | a, | Aa,| T |At,| T, | AT, |<t> o
(ns)
L[ 0.05 | 0.0005] 0.02]0.0001] 0.82 |0.01 | 0.17] 0.01 | 114 [ 0.01 | 528 | 0.006| 1.87 | 1.0

L|+GSH 002 | 0.0017] 0.02 [0.0006] 0.17 | 0.02 | 0.83 | 0.02 | 1.62 [ 0.03 | 7.00 | 0.007 | 609 | 1.0
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Table S4: Rate constants for radiative and non-radiative decays, average lifetimes of L (2.0
uM) and L;-GSH in aqueous medium.

Sample

K,(S)

K,(S?

Slower decay
component

Faster decay
component

Average
lifetime(ns)

Ly

0.00069 x
10°

0.53 x 10°

1.14

5.28

1.87

L, +

0.07 x 10°

0.09 x 10°

1.62

7.0

6.09
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Figure S20: ESI-MS spectra of L; in 1:1 water-acetonitrile in the presence of Hg?' in
positive ionization mode.
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Figure S21: ESI-MS spectra of L; in 1:1 water-acetonitrile in the presence of GSH in
positive ionization mode.
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Figure S22: '"H NMR spectral changes of L; in DMSO-d¢ upon titration with 2 equiv.Hg?"
solution.
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Figure S23: "H NMR spectral changes of L; in DMSO-dg upon titration with 2.4 equiv. of
GSH solution.
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Figure S24: "H NMR spectral changes of GSH in DMSO-d.
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Figure S25: 2D 'H-"H COSY NMR spectra of L;- Hg>* DMSO-dg (1:1 equiv).
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Figure S26: 2D 'H-'H TOCSY NMR spectra of L;- Hg>* DMSO-dg (1:1 equiv).
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Figure S27: 2D 'H-'H COSY NMR spectra of L;- GSH in DMSO-d¢ (1:1 equiv).
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Figure S28: 2D 'H-'H TOCSY NMR spectra of L;- GSH in DMSO-d¢ (1:1 equiv).
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Figure S29: 2D-NOESY NMR spectra of L; in presence of (a) GSH and (b) Hg?*.
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Figure S30: Fluorescence response of L, and L towards Hg>*/GSH.
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Figure S31: DLS analysis of L; (2.0 uM) , L; + Hg? and L; + GSH in aqueous
medium.(Inset: UV spectra of L; + Hg?" and L; + GSH showing upliftment of baseline
indication aggregation nature).
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Figure S32: Zeta potential distribution of L in aqueous medium (pH = 7.4) before and after
addition of analytes.
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Figure S33: Comparative energy level diagrams of L; -cysteine ensemble; L; -homocysteine
ensemble; L; -glutathione ensemble.

Table S5: Comparative analysis of Hg?" in different real environmental samples by using
fluorimetric method and AAS technique.

Fluoresceence Spectroscopy Atomic Absorption
Sample Spectroscopy(AAS)
Added | Detecte | Recov | RSD( Added | Detec | Recove | RSD(
@M) |d ery %)n=3 | (uM) |ted |ry (%) | %)n=3
@M | () (uM)
Drinking
water 2.0 1.8 90 0.4 2.0 2.0 100 0.38
Tap water
2.0 1.9 94 1.35 2.0 1.95 | 975 1.4
Lake water
2.0 2.1 101 0.36 2.0 2.13 | 106 0.4
River water
2.0 1.85 93 2.35 2.0 1.8 90 2.20
Sea water
2.0 2.1 105 0.45 2.0 2.15 107 0.37
Industrial

wastewater 2.0 2.25 110 3.26 2.0 224 | 112 3.00
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Table S6: Determination of GSH in different real biological samples by using fluorimetric
method and HPLC technique.

Fluoresceence Spectroscopy High-performance Liquid
Chromatography(HPLC)
Sample Added | Detect | Recove | RSD(%) | Added | Detec | Reco | RSD
(M) ed ry (%) n=3 (M) | ted very | (%)n
M) @M) | (%) | =3
White grape
2.0 1.85 92.5 0.28 2.0 1.7 87.5 | 0.58
Tomato
2.0 2.1 105 3.52 2.0 1.9 95 4.0
Watermelon
2.0 2.2 110 1.95 2.0 1.9 94 2.5
1:10 Diluted
Human serum | 2.0 2.1 104 0.32 2.0 1.8 90 0.52
@) @)
= % T
X2 4
: R s
‘A . ‘ . : — 211
= SILF SBF S.GF Artificial Milk =OYTCIF © SBF - SGF - Artificial
Urine rin
M L +Hg"  m OnlyL, WL +GSH WOonlyL,

Figure S34: (a) Changes in the emission intensity of L; (2.0 uM) at 414 nm in the presence
of excess Hg?" in simulated fluid samples [S.B.F- Simulated Body Fluid (pH~7.4), S.G.F-
Simulated Gastric Fluid (pH~2.0) and S.I.F- Simulated Intestinal Fluid (pH~8.0)], artificial
urine sample and milk sample.(b) Fluorescence response of L; (2.0 uM) at 420 nm in the
presence of excess GSH in simulated fluid samples [S.B.F- Simulated Body Fluid (pH~7.4),
S.G.F- Simulated Gastric Fluid (pH~2.0) and S.I.F- Simulated Intestinal Fluid (pH~8.0)] and
artificial urine sample.
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Figure S35: RGB analysis by the color recogniser app.
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Figure S36:(a) Fluorescence response of L; (2.0 uM) to various analytes in presence of
GSH. (b) Fluorescence response of L (2.0 uM) to various analytes in presence of Hg?".
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Table S7: A comparative study of the proposed receptor with some previously reported ones.

S1 No. References Receptor Solvent System LOD(ppb) Sensing
(Operation mode) analyte
1. Present work Fluorene derivative 100% Aqueous 17.35 Hg?>" and
(Bifunctional receptor i.e. both for (Off-on) medium (0.0865 pM) GSH
mercury(Il) and GSH 25.83 discretely
(0.0840 pM)
2. Spectrochimica Acta Part A: Molecular Naphthoquinone probe DMSO-H,0 (9:1, v/v) 90.46 Hg*
and Biomolecular Spectroscopy,2021, (Oft-on) solution (0.451 uM)
257,119316
3. Spectrochimica Acta Part A: Molecular Cytidine-Au nanoclusters - 3073.2 GSH, GSSH,
and Biomolecular Spectroscopy,2021, (Colorimetric color change) (10 uM) GR
250, 119776
4. Sensors and Actuators: B. Chemical., Au/N-CQDs Aqueous medium 23.66 Hg*
2018, 255(Part1),657-665 (On-ofY) (0.118 uM)
5. Microchemical Journal, 2019, 150, Quinazoline derivative DMSO 1271 Hg?*
104123 (Off-on) (6.34 uM)
6. Inorganic Chemistry Communications, Fluorescein based probe MeOH:HEPES (5:95 22 Hg?
2018, 89, 46-50 (Off-on) v/v,20 mM, pH 7.4) (0.11 uM)
7. Anal. Methods, 2019, 11, 227-231 Terpyridine based probe Aqueous solution 138 Hg*
(On-off) (0.68 uM)
8. ACS Appl. Mater. Inter.,2017, 9, 13554— Eu(DPA)3@Lap-Tris/Cu2+ hydrogel 49.78 GSH
13563. (Off-on) (0.162 uM)
9. Rsc Adv., 2016,6, 79526—79532. MnO,-Cu nanocomposites - 30.73 GSH
(Off-on) (0.1 uM)
10. Sensors and Actuators: B. Chemical., Bromoacetyl bromide-functionalized PBS buffer (0.01 43 GSH
2017, 251,753-762 CDs mol/L, pH = 8.0) (0.14 uM)
(Oft-on)
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