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Fig. S1 Crystal structure of (a) CsPbBr3 and (b) CsPbBr3-Zn QDs and (c) CsPbBr3-Zn 

QDs absorbing ethanol and (d) CsPbBr3-Zn QDs absorbing H2O. The cyan, orange, 

pink, purple, red, brown, yellow, silvery, green represent the atoms Cs, Pb, Br, Zn, O, 

C, S, F and H, respectively. 
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Fig. S2 DFT calculation results from Fig. S1: Energy band diagram of (a) CsPbBr3 

and (b) CsPbBr3-Zn QDs and (c) CsPbBr3-Zn QDs absorbing ethanol and (d) 

CsPbBr3-Zn QDs absorbing H2O. 

Fig. S3 Elemental mapping of Cs, Br, Pb and Zn in the CsPbBr3-Zn QDs. 
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Fig. S4 Size distribution of CsPbBr3-Zn QDs in Fig. 2e. 

Fig. S5 PL emission and UV-vis absorption spectra of (a) CsPbBr3 and (b) CsPbBr3-

Zn QDs. 
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Fig. S6 Time-resolve PL delay plots of CsPbBr3 (orange line) and CsPbBr3-Zn QDs 

(red line). 
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Fig. S7 Fourier transform infrared spectroscopy of CsPbBr3 (purple line) and 

CsPbBr3-Zn QDs (red line). 



6

0 20 40 60

0.00

0.02

0.04

0.06

Se
ns

iti
vi

ty
((

R
-R

0)
/R

0)

Time (s)

 Unpurified CsPbBr3

      Purified CsPbBr3

Fig. S8 Sensor responses of unpurified and purified CsPbBr3 QDs towards 400 ppm 

ethanol at RT. 

Fig. S9 (a) Lower and (b) upper detection limits of CsPbBr3-Zn sensor. 
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Fig. S10 Response curves of the sensors based on CsPbBr3 and CsPbBr3-Zn QDs 

under ambiance of 400 ppm ethanol and 70% RH. 

0 20 40 60
-0.02

0.00

0.02

0.04

0.06

0.08
 Under 400 ppm

N
or

m
al

iz
ed

 S
en

si
tiv

ity
 (a

.u
.)

Time (s)

 Oxygen
 Carbon dioxide
 Air
 Isopropanol
 Methanol
 Ethanol

Fig. S11 Selectivity of a CsPbBr3-Zn QD sensor to 400 ppm different gases (oxygen, 

carbon dioxide, air, isopropanol, methanol and ethanol). 
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Fig. S12 Lattice model of ethanol molecule near (a) Zn atom and (b) OTf anion in the 

CsPbBr3 crystal after coordinating with Zn(OTf)2. 

Fig. S13 Changes of bond length and bond Angle in crystal structure of CsPbBr3 QDs 

by addition of Zn(OTf)2. 
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Fig. S14 Gas response curves from a gas sensor based on CsPbBr3-Zn QDs under different ethanol 
concentrations and relative humidity (RH) interference. (a-c) RH value = 0, (d-f) RH = 20%, (h-g) 
RH = 40%. 

In this section, the Gramian Angular Field (GAF) method is used to convert the 

gas sensor response data into two-dimensional images, and the ResNet34 network [1] 

model is used to learn the features in the two-dimensional images, which 

automatically extract the features, finally realizing the recognition of 9 kinds of gas 

humidity and concentrations. 

The specific implementation process of Gramian Angular Field is as follows: 

First, data is scaled for each sample data, and the data range is scaled to ,and the  10，

expression formula is as follows: 

  )min()max()min(~
iii

t
i

t
i SSSSS 

where is the normalized value at time t, is the response value at time t, and is t~
iS t

iS iS
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the response value within the sampling time range. Next, the scaled normalized time 

series data  is converted to the polar coordinate system, that is, the value is regarded t
iS

as the cosine value of the included angle, and the expression formula is as follows: 

.1~0),~arccos(  t
i

t
it SS

Finally, Gramian angular difference field (GADF) method was used to convert the 

image. For the conversion of single sample time series data into GAF images, the 

image size is set to 64, and the single sample time series is converted into images 

(including GASF and GADF) as shown in Fig. S15 below. 

Fig. S15 Conversion from time series data to images. 



11

Considering the difficulty and complexity of collecting gas samples with different 

humidity and concentrations in the experiment, the classification network model is 

prone to over-fitting under small samples, so the data augmentation network strategy 

is adopted in this paper to increase the number of gas samples and make the 

classification model more robust. Data enhancement network strategies include image 

rotation (90°, 180° and 270°), flipping, image brightness transformation (brighter and 

darker), and Gaussian Blur, resulting in an 8-fold amplification of the total number of 

data samples in this experiment. After that, the image is input into the gas recognition 

network to realize the training and testing process of recognizing 9 kinds of gas 

humidity and concentrations. The images after data augmentation are shown in Fig. 

S16 below. 

   Fig. S16 Images after data augmentation. 
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Table S1 Fitted results of the PL decay of CsPbBr3 and CsPbBr3 – Zn QDs. 

Samples τ1 [ns] A1 τ2 [ns] A2 τave [ns] λ²

CsPbBr3 QD 3.39 0.71 13.32 0.29 9.51 0.999

CsPbBr3-Zn QD 4.86 0.73 16.49 0.27 11.33 0.999
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Table S2 Comparison on gas-sensing performance of CsPbBr3 – Zn QDs reported in 

this work with the previously published articles. 
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Sensor Response
T(℃)

Ethanol.
Conc(ppm)

Response 
time (s)

Recover 
time (s)

Ref

Zn(OTf)2 4.32%c RT 400 3.9 3.6 this work

Ag/V2O5 22.5a RT 500 13 7 [2]

Ga/NiO 25b 250 50 8 13 [3]

CuO 241%d 250 100 NA NA [4]

CuO 129%d 300 300 38 462 [5]

V2O5 81.7%c 280 200 17.6 39.7 [6]

ZnO/Co3O4 34.9a 300 10 57 235 [7]

PdOx/Co3O4 19.6b 130 50 43 14 [8]

Co3O4/NiO 4.26b 250 100 NA NA [9]

Ag-ITO 70%c 130 100 45 40 [10]

In2O3 250a 250 50 16 14 [11]

Ru/WO3 120a 200 100 1 18 [12]

Pt/W18O49 59a 300 80 20 10 [13]

In2O3 43.1a 300 100 37.6 1454.5 [14]

Sb/In2O3 41.3a 320 100 17 36 [15]

In2O3 180a 240 200 1 93 [16]

a-MnO2 30.6a 300 200 30 40 [17]

Au/
In-Ga-Zn-O

27.9a 250 100 102 68 [18]

SnO2/CuO 8.8a 340 250 6 10 [19]
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a:(Ra / Rg), b:(Rg / Ra), c:([Ra - Rg] / Ra*100%), d:([Rg - Ra] / Rg*100%), NA:Not 
available. 
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