Organic room temperature phosphorescence from grinding to water vapor enhancement for humidity detection and anti-counterfeiting printing

Changli Zhang, Lingyun Lou, Yuzhan Li, Chengxiang Li, Dong Wang, Hui Cao, Wanli He and Zhou Yang *

Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road 30#, Haidian District, Beijing 100083, China * Correspondence: yangz@ustb.edu.cn; Tel.: +86-010-62333759.
Supplementary Fig. 1 Powder X-ray diffraction (PXRD) patterns of CA, NI and their doped materials.

Supplementary Fig. 2 Fluorescence emission spectra of CA, NI, and doped material NC in DMF.
Supplementary Fig. 2 The photoluminescence (PL) and corresponding excitation spectra of CA.

Supplementary Fig. 3 The phosphorescence spectrum and corresponding excitation spectrum of NI at 77K.
Supplementary Fig. 4 The phosphorescence spectrum and corresponding excitation spectrum of NC.

Supplementary Fig. 5 Solid UV absorption spectra, fluorescence spectra and phosphorescence spectra (77K) of NI.
Supplementary Fig. 6 The phosphorescence CIE coordinates of NC after grinding, adding water, and drying.

Supplementary Fig. 7 Photographs of host material, guest material and their doped materials under and after excitation at room temperature at 365nm.