Supplementary material

(001)-TiO$_2$ nanosheets loaded on BiOI improve carrier separation and enhance the photocatalytic activity

Xin Mai a, Ran Gao a, Yeheng Zhang a, Junnan Chen a, Wensong Lin* a, and Chengli Mai b

a School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, China;

b Shanxi Normal University, Shanxi, China; E-mail:maichengli@163.com;

* corresponding author: Wensong Lin, wsling@shues.edu.cn, ORCID:0000-0001-7187-6489

This supporting information contains the following information:

Fig. S1 TIC images of RhB after degradation reaction.

Table. S1 Summary of the results for various photocatalysts based on TiO$_2$ for degradations of RhB.
Fig. S1 TIC images of RhB after degradation reaction.

Table. S1
Summary of the results for various photocatalysts based on TiO$_2$ for degradations of RhB.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Light source</th>
<th>Experimental conditions</th>
<th>Degradation efficiency</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(001)-TiO$_2$/BiOI</td>
<td>300W Xe-lamp</td>
<td>Catalyst = 50 mg [RhB] = 10 mg L$^{-1}$</td>
<td>95% in 60 min</td>
<td>This work</td>
</tr>
<tr>
<td>Ag@AgI/TiO$_2$</td>
<td>Xe 1000 W</td>
<td>Catalyst = 50 mg [RhB] = 10 mg L$^{-1}$</td>
<td>91% in 90 min</td>
<td>[S1]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$/TiO$_2$/Graphene oxide</td>
<td>Wolfram 300 W</td>
<td>Catalyst = 20 mg [RhB] = 10 mg L$^{-1}$</td>
<td>92.98% in 80 min</td>
<td>[S2]</td>
</tr>
<tr>
<td>TiO$_2$ NTs/BiOI</td>
<td>500W Xe-lamp</td>
<td>Catalyst = 50 mg [RhB] = 10 mg L$^{-1}$</td>
<td>62% in 180 min</td>
<td>[S3]</td>
</tr>
<tr>
<td>Bi/Bi$_2$MoO$_6$/TiO$_2$NTs</td>
<td>500W Xe-lamp</td>
<td>Catalyst = 20 mg [RhB] = 10 mg L$^{-1}$</td>
<td>73.21% in 120 min</td>
<td>[S4]</td>
</tr>
</tbody>
</table>
References

