Manufacture of highly loaded Ni catalysts by carbonizationoxidation-reduction for dry reforming of methane

Yue Bai*a, Dongyang Shen*b, Guowang Yua, Jie Wanga, Shuai Lyua, Yuhua Zhanga,

Guanghui Wang^b, Jinlin Li^{†a}, Lin Li^{†a}

^aKey Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education

& Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.

^bHubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

*Correspondence and requests for materials should be addressed to L. Li (E-mail: lilinchem@126.com) or to J. Li (E-mail: jinlinli@aliyun.com)

*These authors contributed equally to this work.

Supplementary Figure 1. TEM, HAADF, and EDS-Mapping of (a-c) 10% Ni/MCF-C, (d-f) 20% Ni/MCF-C, and (g-i) 30% Ni/MCF-C.

Supplementary Figure 2. Catalytic stability tests under the reaction conditions: $m_{cat.} = 0.2 \text{ g}$, $CH_4: CO_2: N_2 = 1: 1: 2$, T = 600 °C, $GHSV = 36 \text{ L} \cdot \text{g}_{cat}^{-1} \cdot \text{h}^{-1}$. (a) CH_4 conversion, (b) CO_2 conversion, and (c) the rate of H_2/CO .

Supplementary Figure 3. HAADF and size distribution of (a) 30% Ni/MCF-COR and (b) replicate, (c) catalytic performance. Reaction conditions: $m_{cat.} = 0.2$ g, $CH_4 : CO_2 : N_2 = 1 : 1 : 2$, T = 600 °C, $GHSV = 36 L \cdot g_{cat}^{-1} \cdot h^{-1}$.

Supplementary Figure 4. TEM of used (a-c) 30% Ni/MCF-H₂, (d-f) 30% Ni/MCF-C, and (g-i) 30% Ni/MCF-COR.

Supplementary Figure 5. TEM, HAADF, and EDS-Mapping of used (a) 10% Ni/MCF-C, (b) 20% Ni/MCF-C, and (c) 30% Ni/MCF-C.