DFT Studies on the Effect of Additives on Stereoselectivity in the Polymerization of Styrene Catalyzed by Rare Earth Metal Complexes

Xin Wen,† Xiaonan Xing,† Wenzhen Zhang,‡ Han Lu,§ Ling Zhu,¶ Xiaowei Xu,‖ Yanan Zhao,*‡ Dongmei Cui*∥ and Yi Luo*‖

†State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China. E-mail: luoyi@dlut.edu.cn
‡State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. E-mail: yananzhao99@sioc.ac.cn
‖PetroChina Petrochemical Research Institute, Beijing, 102206, China.
¶State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail: dmcui@ciac.ac.cn

Fig. S1. Computed energy profiles for \(^{a}\text{Sc}\) mediated various insertion manners of styrene. Energies are relative to the corresponding cationic species \(^{a}\text{Sc}\) and styrene.
Fig. S2. Calculated energy profiles for styrene insertion into aSc with THF (black curve) and without THF (red curve) of the first molecule. Energies are relative to the corresponding cationic species aSc and styrene.

Fig. S3 Computed energy difference between aSc and bSc or bSc-1.
Fig. S4 Geometric structure analysis of aTS$_{iso}$, aTS$_{syn}$, bTS$_{iso}$ and bTS$_{syn}$.
Fig. S5 Noncovalent interaction (NCI) analyses of different conformations in the presence of VOB.

Fig. S6. 1H NMR spectrum of αPS (Table 1, entry 4) obtained in toluene. (25°C, CDCl3, *H2O).
Fig. S7 The energy barrier difference between the isotactic TS and the syndiotactic TS at the chain propagation stage when the additives are PPOB and AB.