Supplementary material

Triazole derivative of guttiferone-A inhibits the proliferation of HepG2 cells by modulating MAPK/ERK signaling and expression profiles of regulators of G1/S transition

Dayana A. Rodrigues^{a,1}, Bianca L. de Sousa^{a,1}, Carolina Girotto Pressete^{b,1}, Júnio G. da Silva^c, Bruno Zavan^b, Ester Siqueira Caixeta^b, Antônio Jacinto Demuner^a, Eduardo J. Pilau^d, Evandro Silva^d, Marisa Ionta^{b*} and Marcelo H. dos Santos^{a*}.

^a Departamento de Química, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa-MG, Brazil.

^b Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas-MG, Brazil.

^c Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil.

^d Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo, 5790, Campus Universitário, 87020-900, Maringá-PR, Brazil.

¹These authors contributed equally to this work.

Corresponding authors

*Marisa Ionta (marisa.ionta@unifal-mg.edu.br)

Rua Gabriel Monteiro da Silva, 700, zip code 37130-000, Alfenas-MG, Brazil.

Telephone number 55-35-3701-9582

**Marcelo Henrique dos Santos (marceloh.santos@ufv.br)

Avenida Peter Henry Rolfs, s/n, Zip code 36570-900, Viçosa-MG, Brazil..

Fig. S1. FTIR (ATR) spectrum of guttiferone-A.

Fig. S3. Magnification of ¹H NMR spectrum (300 MHz, CDCl₃) from 1.0 to 2.8 ppm of guttiferone-A.

Fig. S5. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of guttiferone-A.

Fig. S7. Magnification of COSY ¹H-¹H NMR spectrum (300 MHz, CDCl₃) of guttiferone-A.

Fig. S8. FTIR (ATR) spectrum of compound 2.

Fig. S9. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2.

Fig. S12. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound 2.

Fig. S13. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 2.

Fig. S14. FTIR (ATR) spectrum of compound 2.

Fig. S15. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3.

Fig. S16. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 3.

Fig. S17. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound **3**.

Fig. S18. FTIR (ATR) spectrum of compound 4.

Fig. S19. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 4.

Fig. S20. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 4.

Fig. S21. FTIR (ATR) spectrum of compound 5.

Fig. S22. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 5.

Fig. S23. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 5.

Fig. S24. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound 5.

Fig. S25. FTIR (ATR) spectrum of compound 6.

Fig. S26. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 6.

Fig. S27. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 6.

Fig. S28. FTIR (ATR) spectrum of compound 7.

Fig. S29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 7.

Fig. S30. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 7.

Fig. S31. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound 7.

Fig. S32. FTIR (ATR) spectrum of compound 8.

Fig. S33. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 8.

Fig. S35. FTIR (ATR) spectrum of compound 9.

Fig. S36. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 9.

Fig. S38. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound 9.

Fig. S39. FTIR (ATR) spectrum of compound 10.

Fig. S40. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 10.

Fig. S41. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 10.

Fig. S43. FTIR (ATR) spectrum of compound 11.

Fig. S44. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 11.

Fig. S46. HSQC ¹H-¹³C NMR spectrum (300 MHz, CDCl₃) of compound 11.

Fig. S47. FTIR (ATR) spectrum of compound 12.

Fig. S48. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 12.

Fig. S49. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 12.

Fig. S50. Representative histograms showing DNA quantification performed by flow cytometry. HepG2 cells were treated for 48 h with guttiferone-A (1), alkyne (2), and compound 10 at 20 µM Sub-G1 (brown), G0/G1 (pink), S (green), G2/M (blue), hypertetraploid population (dark green).

Fig. S51. Illustrative image evidencing the morphological features of the colonies visualized in a stereomicroscope. The software Zen Lite Zeiss

3.7 was used to select appropriately the colonies with, at least, 50 cells.

Gene	Sequence	Reference
CDKN1A	F 5'- CCATAGCCTCTACTGCCACCATC-3'	NM_001291549.1
	R 5'- GTCCAGCGACCTTCCTCATCCA-3'	
CCND1	F 5'- GGGTTGTGCTACAGATGATAGAG-3'	NM_053056.2
	R 5'- AGACGCCTCCTTTGTGTTAAT-3'	

CCNE2	F 5'- GGCTATGCTGGAGGAAGTAAAT-3'	NM_057749.2
	R 5'- GCTCTTCGGTGGTGTCATAAT-3'	
CDC25	F 5'- TTTTTCCAAGGTATGTGCGCTG-3'	XM_006714739.3
	R 5'- TGGAACTTCCCCGACAGTAAGG-3'	
CDK1	F 5'- ATGAGGTAGTAACACTCTGG-3'	NM_001786.4
	R 5'- CCTATACTCCAAATGTCAACTG-3'	
CNND1	F 5'- GTACCCTCCAGAAATTGGTGA-3'	NM_031966.2
CIVINDI	R 5'- GACTACATTCTTAGCCAGGTG-3'	
ACTB	F 5'- AGAGCTACGAGCTGCCTGAC-3'	NM_001101.3
	R 5'- AGCACTGTGTTGGCGTACAG-3'	
GAPDH	F 5'- GGATTTGGTCGTATTGGGC-3'	NM_002046.4
	R 5'- TGGAAGATGGTGATGGGATT-3'	
18srRNA	F 5'- GTAACCCGTTGAACCCCATT-3'	HQ387008.1
	R 5'- CCATCCAATCGGTAGTAGCG-3'	

 $\overline{F} =$ forward primer; R = reverse primer

Table S2: Specification of the antibody used in Western blotting

Antibody	Dilution	Manufacture
Anti-phosfo-ERK (Tyr204)	1:100	Santa Cruz
Anti-ERK1/2	1:200	Cell signaling
Anti-Cyclin D1	1:200	Santa Cruz

Anti-Cyclin E2	1:200	Santa Cruz
Anti-a-tubulin	1:100	Sigma
Anti-rabbit peroxidase-conjugated	1:2000	Cell signaling

Table S3. Raw data from clonogenic assay

	Number of colonies (% colonies)	
	Control	10 (20 µM)
Replicate 1	375 (98.08 %)	250 (65.39 %)
Replicate 2	390 (102.00 %)	263 (68.79 %)
Replicate 3	382 (99.91 %)	269 (70.35 %)
-		