Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Resin-supported cyclic telluride as a heterogeneous promoter of disulfide formation under solid–liquid biphasic conditions

Yuya Nishizawa,^{a†} Yuri Satoh,^{a†} Osamu Kanie,^b and Kenta Arai^{*a,c}

[†]These authors contributed equally to this study.

* Corresponding author (k-arai4470@tokai-u.jp)

- ^a Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
- ^b Department of Bioengineering, School of Engineering Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
- ^c Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

Contents

1. Experimen	tal	2		
Synthesis of oxytocin				
Preparation of reduced CX-397				
2. NMR spect	ra	4		
3. Supplemen	ital Data	12		
Fig. S1	IR spectrum of RSTe .	12		
Fig. S2	Quantitative analysis of telluride moiety on the resin.	13		
Fig. S3	¹ H NMR spectra obtained from catalytic oxidation of 1-decanethiol (8a) under various conditions.	14		
Table S1	Optimization of reaction conditions of SS-formation of oxytocin.	15		
Fig. S4	MALDI-TOF-MS chromatograms of AEMTS-blocked 10, oxidized 10, and dimerized state via SS bonds.	16		
Fig. S5	HPLC chromatograms obtained from SS-formation experiments of peptides 10 (a), 11 (b) and 12 (c) in the <i>absence</i> of RST . Reaction conditions.	17		
Fig. S6	MALDI-TOF-MS chromatogram of fully oxidized 11 (2SS ^{RIXA}).	18		
Fig. S7	HPLC chromatograms for SS-isomerization of CX397.	18		
4. References	i	19		

1. Experimental

Synthesis of oxytocin (10)

The standard Fmoc-SPPS protocol using dicyclohexylcarbodiimide (DCC) as a condensing reagent was employed. Fmoc-Rink amide resin (109 mg, 0.05 mmol) was swelled with DMF for 16 h at 4 °C. After removing DMF, the resin was treated with 20% piperidine/DMF for 5 min with vortex mixing. After the deprotection reaction was further repeated with fresh 20% piperidine/DMF for 15 min, the resin was fully washed with DMF (×5). Fmoc-Gly-OBt, which was prepared by mixing Fmoc-Gly-OH (64.9 mg, 0.2 mmol), 0.5 M HOBt/DMF (300 µL), and 0.5 M DCC/DMF (300 µL) for 30 min, was added to the resin. The mixture was vortexed for 60 min at 50 °C. After the coupling, the resin was washed with 50% MeOH/DCM (×3). The reaction progression was monitored by a Kaiser test. The unreacted amino groups were acetylated by using 10% Ac2O and 5% DIEA in DMF for 5 min. Applying a similar protocol, the peptide chain was elongated on the resin, and the N-terminal Fmoc group was finally deprotected by 20% piperidine/DMF to yield H-Cys(Trt)-Tyr(t-Bu)-Ile-Gln(Trt)-Asn(Trt)-Cys(Trt)-Pro-Leu-Gly-NH-resin (187 mg). The obtained resin was fully washed with 50% MeOH/DCM (×1) and DCM (×3) and dried in vacuo. A portion of the obtained resin (100 mg, 27 µmol) was treated with a TFA cocktail (trifluoroacetic acid (TFA) : H2O : triisopropylsilane (TIS): 1,2-ethanedithiol (EDT) = 94 : 2.5 : 1.0 : 2.5, v/v/v, 4 mL), and the mixture was stirred for 3 h at room temperature. After the removal of TFA by N₂ stream, the deprotected peptide was precipitated with Et2O, washed with Et2O (×3) and dried in vacuo. The resulting crude peptide was purified by using HPLC, which was equipped a 3 mL sample solution loop and a RP-column (ODS-HL $\phi 10 \times 250$ mm [GL science, Tokyo, Japan]), at a flow rate of 4.7 mL/min. After injecting the sample solution, the ratio of eluent B was increased linearly from 15% to 35% in 0–20 min. The corrected fraction containing the target peptide (10) was lyophilized to yield 10 as a white powder (6.4 µmol, 24%). MALDI-TOF-MS (m/z) found: 1009.67, calcd for [M+H]+: 1009.46. Peptide 10 was divided into small portions in micro-centrifuge tubes (2.0 mL capacity) so as to be 100 nmol per a tube and lyophilized. The resulting product was then used to SS-formation experiment using **RSTe** as described in Experimental (See the main text).

Preparation of reduced CX-397 (12)

An excess amount of DTT^{red} (18 mg) was added to a powder of CX397 (8 mg) dissolved in 100 mM Tris-HCl buffer solution containing 1 mM EDTA and 4 M guanidinium thiocyanate as a denaturant at pH 8.0 (600 μ L). After incubation at 25 °C for 60 min, the resulting fully reduced CX397 (**12**) was purified by passing through a column packed with Sephadex G25 resin, which was equilibrated with 0.1 M acetic acid. The collected fraction of R^{CX397} was lyophilized to give a white

powder of **12**. The powder of **12** was redissolved in aqueous 0.1% TFA solution (4 mL), and the quantity of the protein in the solution was estimated by UV absorbance at 275 nm based on the molar extinction coefficient ($\varepsilon = 2960 \text{ M}^{-1} \text{ cm}^{-1} \text{ S}^{1}$). Compound **12** was divided into small portions in micro-centrifuge tubes (2.0 mL capacity) so as to be 80 nmol per tube and lyophilized. The resulting product was then used to SS-formation experiment using **RSTe** as described in Experimental (See the main text).

2. NMR spectra of disulfide compounds

9a: 1,2-Didecyl disulfide

Using thiol **8a** (102.5 mg, 0.59 mmol) and **RSTe** (2.95 µmol [0.5 mol%]), disulfide **9a** was obtained as a colorless oil. Yield: 102 mg (quant.) using CHCl₃ as a solvent, respectively; ¹H NMR (CDCl₃): $\delta = 2.70$ (t, J = 7.3 Hz, 4H), 1.72–1.66 (m, 4H), 1.43–1.37 (m, 4H), 1.35–1.26 (m, 24H), 0.90 ppm (t, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃): $\delta = 39.23$, 31.91, 29.58, 29.54, 29.33, 29.27, 29.25, 28.55, 22.69, 14.11 ppm. Spectroscopic data is in accordance with our previous report.^{S2}

9b: 1,2-Dicyclohexyl disulfide

Using thiol **8b** (62.7 mg, 0.54 mmol) and **RSTe** (2.70 μ mol [0.5 mol%]), disulfide **9a** was obtained as a colorless oil. Yield: 60.5 mg (97%); ¹H NMR (CDCl₃): $\delta = 2.73-2.67$ (m, 2H), 2.07–2.02 (m, 4H), 1.83–1.79 (m, 4H), 1.65–1.61 (m, 2H), 1.37–1.20 ppm (m, 10H). Spectroscopic data is in accordance with our previous report.^{S2}

Using thiol **8c** (70.8 mg, 0.57 mmol) and **RSTe** (2.85 μ mol [0.5 mol%]), disulfide **9c** was obtained as a white solid. Yield: 66.3 mg (94%); ¹H NMR (CDCl₃): $\delta = 7.42-7.31$ (m, 10H), 3.68 ppm (s, 4H). Spectroscopic data is in accordance with our previous report.^{S2}

9d: 1,2-Diphenyl disulfide

Using thiol **8d** (59.5 mg, 0.54 mmol) and **RSTe** (2.70 µmol [0.5 mol%]), disulfide **9d** was obtained as a white solid. Yield: 59.0 mg (quant.); ¹H NMR (CDCl₃): δ = 7.54 (d, *J* = 7.6 Hz, 4H), 7.34 (t, *J* = 7.5 Hz, 4H), 7.28–7.25 ppm (m, 2H). Spectroscopic data is in accordance with our previous report.^{S2}

9f: 1,2-Bis(4-(tert-butyl)phenyl) disulfide

Using thiol **8f** (73.1 mg, 0.44 mmol) and **RSTe** (2.20 μ mol [0.5 mol%]), disulfide **9f** was obtained as a white solid. Yield: 73.4 mg (quant.); ¹H NMR (CDCl₃): $\delta = 7.54-7.51$ (m, 4H), 7.42–7.39 (m, 4H), 1.38 ppm (m, 18H). Spectroscopic data is in accordance with our previous report.^{S2}

9h: *Bis(4-fluorophenyl) disulfide*

Using thiol **8h** (69.2 mg, 0.54 mmol) and **RSTe** (2.70 µmol [0.5 mol%]), disulfide **9h** was obtained as an off-white solid. Yield: 60.8 mg (89%); ¹H NMR (CDCl₃): δ = 7.47 (dd, *J* = 5.15, 8.80 Hz, 4H), 7.04 ppm (t, *J* = 17.3 Hz, 4H). Spectroscopic data is in accordance with our previous report.^{S2}

9j: Bis(4-bromophenyl) disulfide

Using thiol **8j** (103.8 mg, 0.55 mmol) and **RSTe** (2.75 μ mol [0.5 mol%]), disulfide **9j** was obtained as a white solid. Yield: 88.9 mg (86%); ¹H NMR (CDCl₃): $\delta = 7.36-7.34$ (m, 4H), 7.27–7.25 ppm (m, 4H). Spectroscopic data is in accordance with our previous report.^{S2}

91: N-(tert-Butoxycarbonyl)-L-cysteine methyl ester

Using thiol **81** (35.6 mg, 0.15 mmol) and **RSTe** (0.75 µmol [0.5 mol%]), disulfide **91** was obtained as a white solid. Yield: 35.1 mg (quant.); ¹H NMR (CDCl₃): $\delta = 5.36$ (d, J = 8.7, 2H), $\delta = 4.54$ (q, J = 7.2, 2H), 3.70 (s, 6H), 3.10–8.09 (m, 4H), 1.38 (s, 18H) ppm. Spectroscopic data is in accordance with our previous report.^{S2}

9n: Oxidized glutathione (GSSG)

Using thiol **8n** (172.7 mg, 0.56 mmol) and **RSTe** (2.80 µmol [0.5 mol%]), disulfide **9m** was obtained as a white powder. Yield: 172.7 mg (quant.); ¹H NMR (D₂O): $\delta = 4.59$ (dd, J = 4.65, 9.35 Hz, 2H), 3.86–3.79 (m, 4H), 3.70 ppm (t, J = 6.4 Hz, 2H), 3.12 ppm (dd, J = 4.8, 14.2 Hz, 2H), 2.83 ppm (dd, J = 9.4, 14.2 Hz, 2H), 2.45–2.34 ppm (m, 4H), 2.02 ppm (q, J = 8.7 Hz, 4H). Spectroscopic data is in accordance with our previous report.^{S2}

Using thiol **80** (8.3 mg, 0.054 mmol) and **RSTe** (0.27 μ mol [5 mol%]), disulfide **90** was obtained as a white powder. Yield: 8.2 mg (quant.); ¹H NMR (D₂O): δ = 3.57–3.56 (m, 2H), 3.06–3.04 (m, 2H), 2.87–2.83 (m, 2H). The obtained spectral data agreed well with that of commercial sample.

3. Supplemental data

Fig. S1 Attenuated total reflectance (ATR)-fourier transformed infrared spectroscopic (ATR-FTIR) analysis. Black and red lines refer to raw resin (NovaSyn[®] TG carboxy resin) having no telluride moiety and **RSTe**, respectively.

Fig. S2 Quantitative analysis of H_2O_2 in water after treatment with **RSTe** or a raw resin (TG-carboxy [®]). The concentration of remained H_2O_2 was estimated by stoichiometric relationship in the redox reaction between H_2O_2 and KMnO₄. See <u>Note</u> for the experimental details described below.

<u>Note</u>: To estimate the modification rate of the resin decorated with telluride 4, the reduction of H_2O_2 by **RSTe** according to eq. 1 was performed, and the concentration of remained H_2O_2 after the reaction was determined by H_2O_2 -KMnO₄ redox titration. Initially, H_2O_2 (0.81 µmol) and **RSTe** or raw-resin (TG-carboxy resin[®]) (0.81 µmol as substituent on the resin) were mixed in 600 µL of water at 37 °C with vigorous mixing for 3 h.

Subsequently, based on eq. 2, H_2O_2 remaining in the reaction solution was oxidized by KMnO₄ in the presence of sulfuric acid.

$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow 2MnSO_4 + K_2SO_4 + 5O_2 + 8H_2O \qquad \qquad \bullet \bullet \bullet (2)$$

The reaction mixture obtained after the reaction (eq. 1) was centrifuged at 6000 rpm for 30 sec. Then, 400 μ L of the supernatant containing up to 540 nmol H₂O₂ was taken up, mixed with 400 μ L of aqueous solution containing 216 nmol KMnO₄ and 100 μ L of 4 M H₂SO₄, and allowed to react for 2 min at room temperature. The concentration of unreacted KMnO₄ in the resulting solution was determined on the basis of the absorbance at 525 nm, from which the concentration of unreacted H₂O₂ in the reaction of eq. 1 was estimated.

The result indicated that 71% of H_2O_2 was converted to H_2O during the reaction for eq. 1, suggesting that TG-carboxy resin[®] was modified with telluride **4** in up to 71%.

Fig. S3 ¹H NMR spectra obtained from catalytic oxidation of 1-decanethiol (8a) under various conditions. Entry numbers correspond to those of Table 1 in the main text.

		г ^{sн} н- <mark>С</mark> Ү 10	^{HS} ∖ IQN <mark>C</mark> PLG-N (100 nmol)	$H_2 \xrightarrow[]{H_2O_2}{RSTe} \xrightarrow[]{RSTe} \xrightarrow[]{25 °C}$	SS H- C YIQN Oxidized	CPLG-NH ₂	
Entry	RSTe (nmol)	H ₂ O ₂	Reaction time (h)	Solvent (Vol. = 1 mL)	Products		
		(nmol)			7 (%) ^a	Oxidized 7 (%) ^{<i>a</i>}	Byproduct [Dimer] (%) ^a
1	100	100	1	0.1%TFA/H ₂ O	48	50	2
2	100	150	23	MeCN:H ₂ O [1:3 v:v]	0	96	4
3	100	150	4	0.1%TFA/H ₂ O	26	74	0
4	100	190	4.5	0.1% TFA/H ₂ O	4	92	4
5	100	210	2	0.1%TFA/H ₂ O	0	96	4
6	150	210	1	0.1%TFA/H ₂ O	0	91	9
7	None	210	2	0.1%TFA/H ₂ O	99	1	0

Table S1 Optimization of reaction conditions for SS-formation of oxytocin.

^{*a*} Ratio estimated from sum of the peak areas for products and the starting material (10) on the HPLC chromatogram.

Fig. S4 MALDI-TOF-MS chromatograms of AEMTS-blocked 10 (A), oxidized 10 (B), and dimerized state via SS-bonds (C). Each product was isolated from HPLC (Fig. 6B).

Fig. S5 HPLC chromatograms obtained from SS-formation experiments of peptides 10 (A), 11 (B) and 12 (C) in the *absence* of RSTe. Reaction conditions: For (A), 10 (100 nmol), H₂O₂ (200 nmol), and raw resin (210 nmol) were mixed in aqueous 0.1 % TFA solution (0.9 mL), and the sample was incubated with agitation at 27 °C for 2 h. For (B), 11 (80 nmol), H₂O₂ (320 nmol), and raw resin (160 nmol) were mixed in aqueous 0.1 % TFA solution (1.0 mL), and the sample was incubated with agitation at 27 °C for 2 h. The symbol x represents byproducts resulting from undesired oxidation of side chains rather than SS-formation between Cys residues. For (C), 12 (80 nmol), H₂O₂ (480 nmol), and raw resin (240 nmol) were mixed in aqueous 0.1 % TFA solution (1.0 mL), and the sample was incubated with agitation at 27 °C for 2 h.

Fig. S6 MALDI-TOF-MS chromatogram of fully oxidized **11** (2SS^{RlxA}). 2SS^{RlxA} was isolated from HPLC (Fig. 6D).

Fig. S7 SS-isomerization experiment of $3SS^{CX397}$ with GSH. (A) MALDI-TOF-MS chromatogram of fully oxidized **12** ($3SS^{CX397}$). $3SS^{CX397}$ was isolated from HPLC. (B) HPLC chromatograms of samples obtained from SS-isomerization experiment of $3SS^{CX397}$. Reaction conditions were [3SS CX397]₀ = 80 µM and [GSH]₀ = 0.15 mM in 100 mM Tris-HCl buffer solution containing 1 mM EDTA at pH 8.0 and 25 °C.

References

- S1. K. Arai, K. Dedachi and M. Iwaoka, Chem. Eur. J., 2011, 17, 481-485.
- S2. K. Arai, Y. Osaka, M. Haneda and Y. Sato, Catal. Sci. Technol., 2019, 9, 3647–3655.