Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Studies on PVDF/Ferrite composite films on flexible substrate for pyroelectric energy conversion

Achal Bhiogade^{1,2}, Katragadda Nagamalleswari³, Pranab Mandal^{3‡} and Vengadesh Kumara Mangalam Ramakrishnan¹*

¹Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India

²Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India

³Department of Physics, SRM University – AP, Amaravati, 522 240, Andhra Pradesh, India.

[‡]Email: pranab.m@srmap.edu.in

*Email: vengader@srmist.edu.in

Table of Contents

1. Phase analysis	2
2. Morphology studies	4
3. Magnetic studies	4
4. Ferroelectric measurement	5

1. Phase analysis

Figure S1. FTIR spectra of 10, 15, 20 % concentration of PVDF films

FTIR spectra (Figure S1) reveal three different concentrations of PVDF (10, 15, 20 w/v %). Figure S1 FTIR spectra show that the 15% concentration of PVDF film has a higher β -phase than the 10 and 20 % concentration of PVDF films.¹

Figure S2. Raman spectra of (a) MnFe₂O₄ and PVDF/MnFe₂O₄ (b) NiFe₂O₄ and PVDF/NiFe₂O₄ composite films

Raman spectra for synthesized MnFe₂O₄, NiFe₂O₄, commercial PVDF powder, PVDF film and PVDF composite films were recorded by using the Micro Raman spectrometer Horiba, LABRAM HR Evolution at room temperature (Figure S2). The Raman band at 473 and 647 cm⁻¹ indicates the tetrahedral and octahedral sites of MnFe₂O₄. The Raman band appeared at 490 and 700 cm⁻¹, indicating the tetrahedral and octahedral sites of NiFe₂O₄.² Raman spectrum of commercial PVDF powder shows the presence of the α -phase, which has peaks at 283, 410, 535, 610, and 795 cm⁻¹. PVDF/MnFe₂O₄ and PVDF/NiFe₂O₄ composite films indicate that the Raman bands at 263, 510, and 839 cm⁻¹ lead to the formation of the β -phase.^{1, 3} As shown in Figure S2, the intense peak of PVDF powder at 795 cm⁻¹ indicates the presence of α -phases, but α -phase is reduced in PVDF film and PVDF composite films by increasing the intensity of β -phase peak at 839 cm⁻¹. As the concentration of fillers increases, the intensity of the β -phase peak decreases, and strong ferrite bands appear in the composite films (Figure S2(a, b)). These results supported FTIR spectra; as the concentration of fillers increases above a certain level, the β -phase is reduced, which may cause due to agglomeration of particles in the composite films.

Figure S3. X-ray diffraction pattern of a) PVDF/MnFe₂O₄ b) PVDF/NiFe₂O₄ composite films

Figure S3 reveals the X-ray diffraction pattern of PVDF/MnFe₂O₄, PVDF/NiFe₂O₄ composite films along with PVDF film, commercial PVDF powder, MnFe₂O₄ and NiFe₂O₄ powder.

2. Morphology studies

Figure S4. Scanning electron micrograph of (a) MnFe₂O₄ (b) NiFe₂O₄ (c) commercial PVDF powder (d) 15P (e) 15P_5MF (f) 15P_10MF (g) 15P_15MF (h) 15P_20MF (i) 15P_5NF (j)15P_10NF (k)15P_15NF (l) 15P_20NF

Figure S4 reveals the scanning electron micrographs obtained for PVDF/MnFe₂O₄, PVDF/NiFe₂O₄ composite films along with PVDF film, commercial PVDF powder, MnFe₂O₄ and NiFe₂O₄ powder.

3. Magnetic studies

Figure S5. Magnetic hysteresis loop of synthesized MnFe₂O₄ and NiFe₂O₄ powder.

Figure S5 reveals the room temperature magnetic hysteresis loop obtained for synthesized MnFe₂O₄ and NiFe₂O₄ powder.

4. Ferroelectric measurement

Figure S6. Ferroelectric hysteresis loop of (a) PVDF film (b-e) PVDF/MnFe₂O₄ composite films

Figure S7. Ferroelectric hysteresis loop of (a) PVDF film (b-e) PVDF/NiFe₂O₄ composite films

The ferroelectric hysteresis loop of PVDF film, PVDF/MnFe₂O₄, and PVDF/NiFe₂O₄ composite films are shown in Figures S6 and S7.

References

- A. Bhiogade, K. Nagamalleswari, P. Mandal and R. V. K. Mangalam, *J. Polym. Res.*, 2023, 30, 288.
- 2. R. B. Kamble, V. Varade, K. Ramesh and V. Prasad, *AIP Adv.*, 2015, 5.
- 3. C. Constantino, A. Job, R. Simoes, J. Giacometti, V. Zucolotto, O. Oliveira Jr, G. Gozzi and D. Chinaglia, *Appl. spectroc.*, 2005, **59**, 275-279.