Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Ni-doped Al₂O₃ sensor for effective SO₃ gas adsorption and sensing

V. Manikandan^{a*}, G. Ayyannan^b, Iulian Petrila^c, Rajaram S. Mane^d, Kamil Sobczak^f, J. Chandrasekaran^a, Robert D. Crapnell^e and Craig E. Banks^e

^aDepartment of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India.

^bDepartment of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India.

^cFaculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. Dimitrie Mangeron, no. 67, 700050 Iasi, Romania

^dCenter for Nanomaterial & Energy Devices, Swami Ramanand Teerth Marathwada University, Dnyanteerth, Vishnupuri, Nanded, 431606, India

^eFaculty of science and engineering, Manchester metropolitan University, chester street, manchester, M1 5GD

^fBiological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.

Fig. S1 XPS survey scan of undoped and doped aluminum oxide nanoparticles.