Supporting Information

High-efficiency and stable FA_{0.75}MA_{0.25}SnI₃ perovskite solar cell with large-size crystal grains prepared by doping with multifunctional chloride salt

Minghao Wang,*a Wei Wang,^b

^aSchool of Electronics and Information Engineering, Wuxi University, 333 Xishan Road, Wuxi 214105, China

^bState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

*Corresponding author (email: 1239580958@qq.com)

Experimental Section

1. Materials

Tin iodide (SnI₂, 99.99%), tin fluoride (SnF₂, 99%), 1,2,4,5-benzenetetramine tetrahydrochloride $(C_6H_2(NH_2)_4 \cdot 4HCl, \geq 95\%)$, N,N-dimethylformamide (DMF, anhydrous, 99.8%), dimethyl sulfoxide (DMSO, anhydrous, 99.9%), chlorobenzene (CB, anhydrous, 99.8%), and bathocuproine (BCP, 99.9%). All above-mentioned chemicals were obtained from Sigma-Aldrich. Formamidinium iodide (FAI, 99.99%) and methylammonium iodide (MAI, 99.9%) were purchased from Xi'an Polvmer Light Technology Corp. Polv(3.4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, PVP AI 4083) was purchased from Heraeus Materials Technology Co. Ltd. Buckminsterfullerene (C₆₀, 99%) was purchased from Nano-C Tech. All chemicals were used as received without further purification.

2. Preparation of perovskite solutions

The perovskite solutions were prepared in a glove box with both H_2O and $O_2 < 0.01$ ppm, which were prepared by dissolving MAI (40 mg), FAI (129 mg), SnI₂ (373 mg) and SnF₂ (16 mg) in a mixed solvent of 800 µL DMF and 200 µL DMSO. Then the as-prepared solutions were stirred for three days. Before use, add x mol $C_6H_2(NH_2)_4$ ·4HCl (x = 0.005, 0.007, and 0.01) to the precursor solutions, and continue stirring until they are dissolved. Finally, the solutions were filtered before use.

3. Device Fabrication

Firstly, the ITO-coated glass substrates (17 mm \times 17 mm) were ultrasonically rinsed with acetone, ethanol and deionized water in sequence. After blown with high purity N₂ and dried in a vacuum with an oven, the ITO substrates were treated with UV-ozone for 11 min. Then, The PEDOT:PSS

aqueous solution was filtered with a 0.45 μ m filter before use, and then it was spin-coated onto the patterned ITO glass substrates at 3500 rpm for 40 s, followed by a 130 °C thermal annealing for 30 min. Then perovskite precursor solution was spin-coated on the PEDOT:PSS-coated ITO substrates at 5000 rpm for 45 s, and 120 μ L CB was used as the anti-solvent to treat the perovskite films at the 13th s. After the spin coating was completed, the perovskite film was placed on a 100 °C hot stage to treat for 15 min. The above operations were all done in a glove box filled with N₂. Finally, 35 nm C₆₀, 8 nm of BCP and 110 nm of Ag were sequentially deposited by thermal evaporation under a high vacuum of >10⁻⁵ Pa, forming a series of PSCs. The active area for all devices is 0.1 cm⁻².

4. Device characterization

The scanning electron microscope (SEM) images of FA_{0.75}MA_{0.25}SnI₃ perovskite films were obtained by using a Hitachi S-4800 field emission scanning electron microscopy. The X-ray diffraction (XRD) patterns were carried out using a Bruker D8 ADVANCE XRD equipment. The steady-state photoluminescence (PL) and time-resolved PL (TRPL) were measured with a Hamamatsu C12132 fluorescence lifetime spectrometer using a 1.5 ns pulsed laser (frequency 15 kHz) at an excitation wavelength of λ =550 nm and an excitation power of 1 mW. The X-ray photoelectron spectroscopy (XPS) spectra of FA_{0.75}MA_{0.25}SnI₃ perovskite films on ITO glass substrate were carried out by using PHI Quantera SXM (ULVAC-PHI) in an ultrahigh-vacuum environment of 5×10^{-11} Pa. The current density-voltage characteristics were carried out using Keithley 2400 under AM 1.5G illuminations (100 mW/cm) from a solar simulator (Oriel Sol3A Class Solar Simulator (94023A)) in a glove box with N₂ atmosphere (H₂O < 0.1 ppm and O₂ < 1 ppm). The incident photon to current efficiency (IPCE) spectra were carried out by QTest Station 500AD Solar Cell Quantum Efficiency System (CROWNTECH, INC). The ultraviolet photoelectron spectroscopy (UPS) was operated with a He discharged lamp (He I 21.22 eV, Kratos Axis Supra). The electrochemical impedance spectra (EIS) were studied with a CHI660 electrochemical workstation (CH Instrument Inc.), which were measured within a frequency range of 10⁵-1 Hz at 0.4 V under dark condition.

Fig. S1. (a) Contact angle of H_2O on pristine and (b) $C_6H_2(NH_2)_4 \cdot 4HCl$ -doped $FA_{0.75}MA_{0.25}SnI_3$ films.

Fig. S2. Grain size statistics of the pristine perovskite and $C_6H_2(NH_2)_4$ ·4HCl-incorporated perovskites with different doping concentration from top-view SEM images: (a) 0 mol%, 507 nm, (b) 0.5 mol%, 760 nm, (c) 0.7 mol%, 853 nm, (d) 1.0 mol%, 872 nm.

Fig. S3. XRD patterns for the precursor films annealed for 0 min, 5 mins and 10 mins.

Fig. S4. SEM patterns for the $FA_{0.75}MA_{0.25}SnI_3$ films annealed for 0 min, 5 mins and 15 mins.

Fig. S5. Stabilities of devices based on pristine and $C_6H_2(NH_2)_4$ ·4HCl-doped FA_{0.75}MA_{0.25}SnI₃ perovskites were measured under AM 1.5 real working condition.

Fig. S6. Stabilities of devices based on pristine and $C_6H_2(NH_2)_4 \cdot 4HCl$ -doped $FA_{0.75}MA_{0.25}SnI_3$ perovskites were measured in (a) air and (b) 90% high humidity environment.

Table S1. Fitted photoluminescence lifetimes for pristine and 0.7 mol% $C_6H_2(NH_2)_4$ ·4HCl-doped FA_{0.75}MA_{0.25}SnI₃ perovskite films with a bi-exponential decay model. Here, A₁ and A₂ are

Sample	τ_{1} (ns)/A ₁ (%)	$ au_2$ (ns)/A ₂ (%)	χ^2	$\tau_{avr} \left(ns \right)$
Pristine	0.46/35.82	2.18/64.18	0.914	1.56
0.7 mol% C ₆ H ₂ (NH ₂) ₄ ·4HCl	0.99/32.84	3.93/67.16	1.106	2.97

fractional intensities, and τ_1 and τ_2 are lifetimes. The average carrier lifetime was calculated with $\tau_{avr} = A_1 \tau_1 + A_2 \tau_2$.