Supporting Information

A New-AIE-ligand-based metal-organic framework “turn-on” sensor with extremely high sensitivity

Jinfang Zhanga,*, Wenjing Lia, Simeng Rena, Shunchang Zhaoa, Xingyu Taoa, Qinghan Chena, Dejing Yinb and Chi Zhanga,c,*

a International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

b School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China

c School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

Table of contents

Table S1. Selected bond lengths(Å) and angles for 1.

Figure S1. The crystal structure of 3-L.

Figure S2. (a) the asymmetric unit of 1; (b) the coordination environments of Cd.

Figure S3. The PXRD analysis of 1.

Figure S4. The thermogravimetric analyses (TGA) of 1.

Figure S5. The IR spectra of 1 before and after sensing Bi3+ and Fe3+.

Figure S6. Luminescence spectra of 3-L in DMF/water mixture with various water fractions (f_w).

Figure S7. The particle size distribution of the suspension.

Figure S8. the excitation and emission spectra of the water suspensions of 1.

Figure S9. Optical images of 1 before and after sensing Bi3+ and Fe3+.

Figure S10. XPS spectra before and after sensing Bi3+ and Fe3+: (a) total survey, (b) Bi 4f and (c) Fe 2p.

Figure S11. Absorption spectra of Bi3+ and Fe3+ and the excitation and emission of 1.
Table S1 Selected bond lengths(Å) and angles for 1.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Lengths(Å)</th>
<th>Bond</th>
<th>Angles(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(02)-O(1)</td>
<td>2.4531(19)</td>
<td>O(2)-Cd(02)-O(5)</td>
<td>152.65(8)</td>
</tr>
<tr>
<td>Cd(02)-O(2)</td>
<td>2.314(2)</td>
<td>O(2)-Cd(02)-N(00L)</td>
<td>103.06(9)</td>
</tr>
<tr>
<td>Cd(02)-O(3)</td>
<td>2.444(2)</td>
<td>O(5)-Cd(02)-N(00L)</td>
<td>81.16(7)</td>
</tr>
<tr>
<td>Cd(02)-O(4)</td>
<td>2.410(2)</td>
<td>O(2)-Cd(02)-N(1)</td>
<td>86.08(8)</td>
</tr>
<tr>
<td>Cd(02)-O(5)</td>
<td>2.3655(19)</td>
<td>O(5)-Cd(02)-N(1)</td>
<td>85.93(7)</td>
</tr>
<tr>
<td>Cd(02)-N(1)</td>
<td>2.395(2)</td>
<td>N(00L)-Cd(02)-N(1)</td>
<td>166.05(8)</td>
</tr>
<tr>
<td>Cd(02)-N(00L)</td>
<td>2.374(2)</td>
<td>O(2)-Cd(02)-O(4)</td>
<td>72.28(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(5)-Cd(02)-O(4)</td>
<td>81.24(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(00L)-Cd(02)-O(4)</td>
<td>85.64(8)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1 x-1/2, -y+1/2, z-1/2; #2 -x+3/2, y+1/2, -z+1/2; #3 -x+3/2, y-1/2, -z+1/2; #4 x+1/2, -y+1/2, z+1/2
Figure S1. The crystal structure of 3-L (N: blue; C, gray; H atoms are omitted).

Figure S2. (a) the asymmetric unit of 1; (b) the coordination environment of Cd.

Figure S3. The PXRD analysis of 1.
Figure S4. The thermogravimetric analyses (TGA) of 1.

Figure S5. IR spectra of 1 before and after sensing Bi^{3+} and Fe^{3+}.

Figure S6. Luminescence spectra of 3-L in DMF/water mixture with various water
fractions (f_w).

Figure S7. The particle size distribution of the suspension of 1 in H$_2$O.

Figure S8. The excitation and emission spectra of the water suspensions of 1.

Figure S9. Optical images of 1 before and after sensing Bi$^{3+}$ and Fe$^{3+}$ achieved by Leica Microsystems.
Figure S10. XPS spectra before and after sensing Bi$^{3+}$ and Fe$^{3+}$: (a) total survey, (b) Bi 4f and (c) Fe 2p.

Figure S11. Absorption spectra of Bi$^{3+}$ and Fe$^{3+}$ and the excitation and emission of 1.