Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 Therapeutic Potential of Ag(I)-, Au(I)-, Au(III)-NHC complexes of 3-pyridyl wingtip N-heterocyclic carbene

against lung cancer

Prafulla K Behera,^a Lakshmikanta Maity,^a SraddhyaRoy,^b Ananya Das,^b Priyanka Sahu,^a Hemanta K. Kisan,^{c,n}Avtar Changotra, ^dAnvarhusein A. Isab,^eMohammed Benyounes Fettouhi,^eAparajita Bairagi,^b Nabanita Chatterjee,^{b*}and Joydev Dinda^{a*}

^aDepartment of Chemistry, Utkal University, Bhubaneswar-751004, Odisha, India.

^bDepartment of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata-700026,

West Bengal, India.

^cDepartment of Chemistry, Indian Institute of Technology Patna, Bihta-801106, Bihar, India.

^dSchool of Science, Department of Chemistry, Cluster University of Jammu, Jammu-180001, India.

^e Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Figure S0: Chemical structures of the compounds reported by us and other groups similar to present studies	2
Figure S1: ¹ H NMR (DMSO-d6, 400 MHz, 25°C) spectrum of complex 2.	3
Figure S2: ¹³ C NMR(DMSO-d6, 400 MHz, 25°C) spectrum of complex 2.	3
Figure S3: Mass spectrum of complex 2.	4
Figure S4: ¹ H NMR (DMSO-d6, 400 MHz, 25°C) spectrum of complex 3.	5
Figure S5: ¹³ C NMR (DMSO-d6, 400 MHz, 25°C) spectrum of complex 3.	5
Figure S6: Mass spectrum of complex 3.	6
Figure S7: ¹ H NMR (DMSO-d6, 400 MHz, 25°C) spectrum of complex 4.	7
Figure S8: ¹³ C NMR (DMSO-d6, 400 MHz, 25°C) spectrum of complex4.	7
Figure S9. Fig A-C, IC ₅₀ analysis of complex 2 , 3 and 4 in ovarian cancer cells (SKOV3) by MTT assay; Fig D-F, IC ₅₀ analysis of complex 2 , 3 and 4 in breast cancer cells (MDA-MB-231) by MTT assay.	8
Figure S10: The bioavailability radar illustrating drug-likeness nature of complexes 2 (a), 3 (b), and 4 (c), the pink	9
area is representing the optimal range for each property of complexes.	
Table S1. Summary of X-Ray crystallographic data of proligand $1.HPF_6$ and complex 3.	10
Reference	11

Supporting Information

Figure S0: Chemical structures of the compounds reported by us and other groups similar to present studies.

Figure S1: ¹H NMR (DMSO-d₆, 400 MHz, 25°C) spectrum of complex 2.

Figure S2: ¹³C NMR(DMSO-d₆, 400 MHz, 25°C) spectrum of complex2.

Figure S3: Mass spectrum of complex 2.

Figure S4: ¹H NMR (DMSO-d₆, 400 MHz, 25°C) spectrum of complex3.

Figure S5: ¹³C NMR (DMSO-d₆, 400 MHz, 25°C) spectrum of complex3.

Figure S6: Mass spectrum of complex 3.

Figure S7: ¹H NMR (DMSO-d₆, 400 MHz, 25°C) spectrum of complex 4.

Figure S8: ¹³C NMR (DMSO-d₆, 400 MHz, 25°C) spectrum of complex4.

Figure S9. FigA-C, IC₅₀ analysis of complex **2**,**3** and**4** in ovarian cancer cells (SKOV3) by MTT assay; Fig D-F, IC₅₀ analysis of complex **2**,**3** and**4** in breast cancer cells (MDA-MB-231) by MTT assay.

Pharmacokinetic studies:

To detail the function of our synthesized complexes as a drug molecule, we investigated some prime properties like absorption, distribution, metabolism, and excretion (ADME) viaSwissADME tool, a web tool that facilitates to anticipate the physicochemical properties to know the drug-likeness nature of compounds [S2]. The summary of ADME data found for complexes 2, 3, and 4 are presented in the following figure (Figure S10). The complexes are moderately soluble and possess high GI absorption affinity. Complexes 2 and 3 are having 4 rotatable bonds, 2 no. of H-acceptor moieties and zero no. of H-donor moiety, whereas complex 4 is showing 2 rotatable bonds, only one H-acceptor moiety and zero no. of H-donor moiety. All the complexes have bioavailability score 0.55 with only one violation to Lipinski's 'Rule-of-five' due to high molecular weight (MW > 500). Rest of the parameters are compatible with the Lipinski's rule. In the radar plot shown below, 5 parameters are in the physicochemical range in case of complex 3. From this study it may conclude that, the complexes 2, 3 and 4 have the potential to be used as drug as also supported by other studies.

Figure S10: The bioavailability radar illustrating drug-likeness nature of complexes 2 (a), 3 (b), and 4 (c), the pink area is representing the optimal range for each property of complexes.

	Proligand	Complex 3
Empirical formula	$C_{12}H_{10}N_3 F_6P$	$C_{24}H_{18}AuF_6N_6P$
Formula weight	341.20	732.38
Crystal system	Monoclinic	Monoclinic
Space group	C 2/c	$P 2_1/n$
Temperature/K	296	298
a /Å	18.3998(12)	8.6993(5)
b / Å	9.7138(6)	14.4139(8)
c / Å	15.2920(10)	10.5286(6)
α (°)	90	90
β (°)	94.451(2)	106.7960(10)
γ (°)	90	90
Volume / Å ³	2724.9(3)	1263.87(12)
Z	8	2
Density / g cm ⁻³	1.663	1.924
Absorption coefficient	0.271	5.954 mm ⁻¹
Theta range	2.220 to 28.406	2.685 to 28.36
Index ranges	-24<=h<=24,	-11<=h<=11,
	-12<=k<=12,	-19<=k<=19,
	-20<=l<=20	-14<=1<=14
Total / unique / obs. data	48053 /3409/2511	65736/3151/2465
No. of Parameters	199	175
Final R indices	R1 = 0.0828,	R1 = 0.0284,
[I>2sigma(I)]	wR2 = 0.2429	wR2 = 0.0783
R indices (all data)	R2 = 0.1080	R2 = 0.0384,
	wR2 = 0.2730	wR2 = 0.0880
GOF	1.068	1.02

Table S1:Summary of X-Ray crystallographic data of proligand1.HPF₆ and complex3.

Reference

- S1. M. Kriechbaum, D. Otte, M. Listb and U. Monkowius, Dalton Trans., 2014, 43, 8781.
- S2. S. Grimme, J. Antony, S. Ehrlich and H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.