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1H and 13C NMR spectra

NMR spectroscopy is one of the important tools used for the elucidation and authentication of 

molecular structures and provides information regarding the chemical environment and 

interaction of atoms within a given molecule. To ascertain the formation of the compounds, 

NMR spectroscopy was used. The spectra of HL, and its NiL2 and ZnL2 are presented in (Figs 

S6-7, S21-22, and S35-36), respectively. However, due to the paramagnetic nature Co(II) and 

Cu(II) complexes, their 1H and 13C{H}NMR spectra could not be obtained. Hence, other 

characterization methods were used to validate their structures.

The 1H NMR spectrum of the ligand (Fig. S6), displayed characteristic peaks for aromatic 

protons at 7.03-7.90 ppm, which accounted for all protons in the compound. The signal for 

azomethine proton was observed as a single peak at 8.94 ppm [1]. Similarly, the phenolic (OH) 

proton appeared as a single peak downfield at 12.72 ppm [2, 3]. The appearance of the phenolic 

proton in the downfield region relative to the azomethine proton is due to the oxygen atoms 

electron withdrawing effect, which causes a decrease in the electron density around the proton's 

nucleus, resulting in the deshielding of the proton's nucleus by moving downfield. The 

13C{H}NMR of the ligand (Fig. S7), is characterized by peaks at 158.8 and 163.3 ppm from the 
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azomethine carbon and aromatic carbon directly linked to the hydroxyl group, respectively [4, 5]. 

The signals of these carbon peaks appeared in the downfield region of the spectrum as the result 

of a deshielding effect arising from electronegative nitrogen and nitrogen and oxygen atoms, 

respectively. Similarly, the signals for carbons atoms of the aromatic ring were observed at 

118.7–145.1 ppm and it accounted for all the carbon atoms within the ligand. After 

complexation, the signal for the phenolic proton which appeared at 12.72 ppm in the ligand, 

disappear on the spectra of NiL2 and ZnL2 complexes (Figs S21 and S35). This is due to 

deprotonation and subsequent chelation of the ligand to the metal via oxygen atom of the 

phenolic group [6, 7]. The azomethine protons signals were spotted at 8.55 ppm and 8.73 ppm on 

the spectra of NiL2 and ZnL2 complexes, respectively (Figs S21 and S35). These peaks moved  

upfield in the spectra of the complexes compared to the 8.94 ppm in the free ligand due to the 

decrees in electron density on the nitrogen atom arising from coordination to the metal center, 

leading to the formation of metal to nitrogen (M-L) bond [6, 7]. In addition, the aromatic protons 

shifted to 7.66-6.10 ppm and 7.76-6.57 ppm in the spectra of NiL2 and ZnL2, respectively. These 

shifts are due the molecular vibration resulting to the formation of the complexes [7]. The 

summary of this data is presented in Table 3.

IR spectra

The vibrational stretching frequencies associated with the functional groups in the ligand and the 

complexes were studied in the range of 4000-400 cm-1 of infrared spectrum. The spectra are 

presented in (Figs S8, S14, S23, S29, and S37), respectively. Some selected vibrational 

stretching frequencies with their band assignment are given in Table S1. The spectrum of the 

ligand (Fig. S8), showed a weak broad band at 3018 cm-1 which is due to υ(O-H) stretching 

vibrations [8]. The appearance of this stretching vibration as weak band is due intramolecular 



hydrogen bonding between the hydrogen atom of the phenolic group with the azomethine 

nitrogen (Fig. S1). 
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Figure. S1: Intramolecular hydrogen bonding in the ligand

The stretching vibration due to υ(C=N) group was observed at 1618 cm-1 as a strong and sharp 

band [2]. The other stretching bands observed at 1463, 1092, and 760 cm-1 are due to the 

vibrations of υ(C-N), υ(C-Cl), and υ(C-Br), respectively. The spectra of the complexes (Figs. 

S14, S23, S29, and S37) show the absence of peak due to υ(O-H) stretching. The disappearance 

of this peak in the spectra of the complexes is because of chelation of the ligand to the metal ions 

through oxygen atom after deprotonation and affirmed the result of the NMR study. The 

stretching vibration frequency due C=N appeared at 1600-1652 cm-1 region of the spectra of the 

complexes, compared to 1618 cm-1 in the ligand. This further affirmed the participation of 

nitrogen atom in the coordination. This result, also, supported the observation made on the NMR 

study. Similarly, marked shifts were observed in the other stretching bands and this could be due 

to the vibration of the molecule arising from the complexation. New stretching bands were also 

observed between 537-524 cm-1 and 468-423 cm-1 in the spectra of the complexes which are 

assignable to υ(M-O) and υ(M-N) vibration, respectively [2]. This justified the coordination 

through (OH) and (C=N), groups.



Table S1: Some selected vibrational mode (cm-1) of the compounds
Compound OH C=N C-N C-Cl C-Br M-O M-N

HL 3018 1618 1363 1092 760 - -

CoL2 - 1600 1355 1044 789 524 423

NiL2 - 1635 1342 1023 784 524 455

CuL2 - 1612 1352 1074 823 554 428

ZnL2 - 1652 1320 1079 754 537 468

UV-Vis spectra

The electronic absorption study was performed using a 10-3 M sample solution in dimethyl 

sulfoxide. The spectrum of ligand (Fig. S9) displayed two distinct bands at 259 and 361 nm, 

which are due the aromatic moiety and azomethine group, and can be assigned to the π→π* and 

n→π*  transitions, respectively [9]. Similarly, the spectra of CoL2, NiL2, CuL2, and ZnL2 

complexes (Figs. S15, S24, S30, and S38) revealed three absorption bands each in the range of 

237-268 nm, 283-355 nm, and 401-474 nm, which correspond to the π→π*, n→π*, and ligand-

to-metal charge transfer (LMCT) transitions, respectively [10-12]. The decrease in absorption 

associated with the azomethine group is caused by a decrease in electron density on the nitrogen 

atom because of its participation in coordination with a metal ion via the lone pair of electrons. 

Furthermore, all the complexes' formation was justified by the appearance of a new absorption 

band in the visible region of the spectra.

PXRD and SEM-EDX studies

Several attempts to isolate the crystals of CoL2 and ZnL2 suitable for single crystal X-ray 

diffraction (SCXRD) data collection were futile. To further elucidate their structure and examine 

their chemical composition, powder X-ray diffraction (PXRD), scanning electron microscopy 



(SEM), and energy dispersive X-ray (EDX) analyses were performed. The diffractogram and 

spectra are presented in (Figs. S11-12, S17-19, S26-27, S32-33, and S39-41) for HL, CoL2, 

NIL2, CuL2, and ZnL2, respectively.

The XRD diffraction patterns for the CoL2 and ZnL2 complexes were obtained in the 2Θ = 0-90 o 

range, and the diffractogram are shown in Fig. S2. The complexes' diffraction pattern exhibits 

several reflections with peaks that are clearly defined and sharply crystalline, ranging from 0 to 

60 o, proving that the compounds are crystalline [13]. The average crystallite size (dXRD) of the 

complexes was also determined using Scherers' formula [14], with the result revealing that CoL2 

has an average crystallite size of 79 nm and ZnL2 has an average crystallite size of 72 nm. 

Similarly, the diffractogram of ZnL2 showed sharp peak peaks compared to CoL2 diffractogram. 

This indicates that ZnL2 has a higher crystallinity than CoL2 [15].

Figure S2: Powder X-ray diffraction pattern of CoL2and ZnL2 complexes

The particle morphology and chemical composition of the ligand were investigated using SEM 

and EDX analyses, and it was compared to the CoL2 and ZnL2 complexes. Figs.S3-4 show SEM 

images and EDX spectra of HL, CoL2, and ZnL2. The ligand's particle morphology consists of 

well-arranged block-like structures in various forms. However, the particle morphology of CoL2 

and ZnL2 revealed a fine rod-like array of various sizes and shapes scattered across it, indicating 

the complexes' crystalline nature. This difference in particle morphology between the ligand and 



the complexes is indicative of the formation of new material (the complex). The chemical 

composition of CoL2 and ZnL2 were further examined using EDX. The spectra of the complexes 

show peaks of elements C, N, Cl, Br, O, Co, and Zn, which account for the presence of the 

elements in the compounds quantitatively and supported their proposed structures.

Figure S3: SEM images of HL (A), CoL2 (B), and ZnL2 (C)

Figure S4: EDX spectra of CoL2 (A) and ZnL2 (B)
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Thermal study

The thermal properties of the free ligand and its complexes were evaluated using 

thermogravimetric analysis (TGA) in a nitrogen environment from room temperature to 800 ℃, 

and the combined thermogravimetric curve is shown in Fig. S5, and individual 

thermogravimetric curves are shown in (Figs. S10, S16, S25, and S31), respectively. The curves 

show that the ligand was stable from 0 to 200 ℃ and decomposed in a single stage at 220 ℃, 

representing 96.6% molecule decomposition. The thermal behavior of the complexes shows 

some similarity. Their thermogravimetric curves showed two stages of decomposition. They 

were all stable from 0 to 220 ℃, with the first decomposition stage occurring between 230 and 

300 ℃ and the formation of air-stable residual metal oxides occurring between 310 and 450 ℃. 

The two stages represent the decomposition of the ligand molecules. Overall, the complexes 

show a clear increase in thermal stability when compared to the ligand. 

Figure S5: Thermogravimetric curve of the ligand and its complexes



Figure S6: 1H NMR spectrum of HL (500 MHz, DMSO-d6)

Figure S7: 13C NMR spectrum of HL (125 MHz, DMSO-d6)

Figure S8: FTIR of spectrum HL
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Figure S9: UV-Vis of spectrum HL

Figure S10: Thermogravimetric curve of HL

Figure S11: SEM image of HL



Figure S12: Powder X-ray spectrum of HL
UP, Chemistry Dept.LC-MS (Synapt) Facility
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Figure S13: Mass spectrum of HL

 
Figure S14: FTIR of spectrum CoL2
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Figure S15: UV-Vis spectrum of CoL2

Figure S16: Thermogravimetric curve of CoL2



Figure S17: PXRD spectrum of CoL2

Figure S18: SEM image of CoL2



Figure S19: EDX spectra of CoL2
UP, Chemistry Dept.LC-MS (Synapt) Facility
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Figure S20: Mass spectrum of CoL2

Figure S21: 1H NMR spectrum of NiL2 (500 MHz, DMSO-d6)
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Figure S22: 13C NMR spectrum of NiL2 (125 MHz, DMSO-d6)

Figure S23: FTIR spectrum of NiL2

Figure S24: UV-Vis spectrum of NiL2



Figure S25: Thermogravimetric curve of NiL2

Figure S26: SEM image of NiL2



Figure S27: EDX spectra of NiL2
UP, Chemistry Dept.LC-MS (Synapt) Facility
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Figure S28: HRMS spectrum of NiL2

Figure S29: FTIR spectrum of CuL2
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Figure S30: UV-Vis spectrum of CuL2

Figure S31: Thermogravimetric curve of CuL2

Figure S32: SEM image of CuL2



Figure S33: EDX spectra of CuL2
UP, Chemistry Dept.LC-MS (Synapt) Facility
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Figure S34: Mass spectrum of CuL2
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Figure S35: 1H NMR spectrum of ZnL2 (500 MHz, DMSO-d6)

Figure S36: 13C NMR spectrum of ZnL2 (125 MHz, DMSO-d6)

Figure S37: FTIR spectrum of ZnL2 
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Figure S38: UV-Vis spectrum of ZnL2 

Figure S39: PXRD spectrum of ZnL2 



Figure S40: SEM image of ZnL2 

Figure S41: EDX spectra of ZnL2 
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Figure S42: Mass spectrum of ZnL2 
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Figure S43: Two-dimensional fingerprint plots for the free ligand (HL) (a-v), CuL2 (w-tt) and 

NiL2 (uu-ooo) 

Table S2: Interaction energies between the atoms within the interaction topology network for 

HL





Table S3:  Interaction energies between the atoms within the interaction topology network for 
CuL2

Table S4:  Interaction energies between the atoms within the interaction topology network for 
NiL2



Figure S44: Representative culture plates for the in vitro studies showing the zone inhibitions
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Figure S45: Representative of the 96 well plates for the MIC studies 



Table S5: Comparisons of the energies for highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps and 
Ionization Potentials for the compounds

Compound HOMO 
(eV)

LUMO 
(eV)

ΔE 
(eV)

Ionization 
Potential 

(eV)

Electron 
Affinity 

(EA)

Electronegativity 
(χ)

Hardness 
(η)

Softness 
(δ) 

(1×10-2)

Electrophilicity 
index (ω)

Nucleophilicity 
index (N)

Chemical 
Potential (μ)

(eV)
L2 −7.73 −1.32 6.41 7.54 0.289 3.91 7.25 1.38 1.06 3.04 −3.91

CoL2 −7.18 −1.38 5.80 - - 1.34 - 0 0 1.94 −1.34

CuL2 −7.21 −1.45 5.77 - - 2.33 - 0 0 1.96 −2.33

NiL2 −7.17 −1.36 5.81 6.67 1.27 3.97 5.40 1.85 1.46 3.62 −3.97

ZnL2 −7.09 −1.43 5.66 6.87 1.01 3.94 5.86 1.71 1.32 3.42 −3.94



Figure 46: The highest occupied and lowest unoccupied molecular orbitals of the compound
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