Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

TfOH-Promoted Multichannel Transformations of Trifluoromethyl Side Chain Substituted Thiophene and Furan Families to Access Antimicrobial Agents

Olesya V. Khoroshilova,¹ Lia R. Nikiforova,² Julia V. Salmova,² Artem O. Taraskin,² Kristina E. Borovkova,² Daria V. Spiridonova,³ Aleksander V. Vasilyev^{1,4}*

¹ Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia

² RMC «HOME OF PHARMACY» Leningrad region., Vsevolozhsk district, p. Kuzmolovsky, 245, 188663, Russia

³Research Center for X-ray Diffraction Studies, Research Park, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, Petrodvoretz, 198504, Russia

⁴ Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per.,

5, Saint Petersburg, 194021, Russia

*Corresponding author: A.V. Vasilyev; e-mail: aleksvasil@mail.ru, a.vasilyev@spbu.ru

Contents

1. Copies of ¹ H, ¹³ C{ ¹ H}, ¹³ C{ ¹⁹ F}, ¹⁹ F{ ¹ H}, COSY H-H, NOESY H-H	H, HSQC C-
H, HOESY F-H, DEPT NMR Spectra of compounds 1-14	S2
2. Copies of ¹ H NMR Spectra of the compounds previously	obtained by
ourselves	S131
3. X-ray data	S134
4. Biological study data	S140

Copies of ¹H, ¹³C{¹H}, ¹³C{¹⁹F}, ¹⁹F{¹H}, COSY H-H, NOESY H-H, HSQC C-H, HOESY F-H, DEPT NMR Spectra of compounds 1-14

Fig. S3.¹H NMR spectrum of (5-methylthiophen-2-yl)(phenyl)methanone (CDCl₃, 400 MHz).

Fig. S5.¹H NMR spectrum of (5-chlorothiophen-2-yl)(phenyl)methanone (CDCl₃, 400 MHz).

S6

S7

Fig. S13. ¹³C{¹H} NMR spectrum of the compound **1c** (CDCl₃, 101 MHz).

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (μα)

Fig. S14. ¹⁹F{¹H} NMR spectrum of the compound **1c** (CDCl₃, 376 MHz).

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 Fig. S17.¹⁹F{¹H} NMR spectrum of the compound **1h** (CDCl₃, 376 MHz).

Fig. S21. ¹H NMR spectrum of the compound **1k** (CDCl₃, 400 MHz).

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 Fig. S23. ¹⁹F{¹H} NMR spectrum of the compound **1k** (CDCl₃, 376 MHz).

 $_{f_1(MA)}^{50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10 \ -20 \ -30 \ -30 \ -30 \ -50 \ -60 \ -70 \ -80 \ -90 \ -100 \ -110 \ -120 \ -130 \ -140 \ -150 \ -160 \ -170 \ -180 \ -190 \ -200 \ -210 \ -220 \ -230 \ -240 \ -250 \ -260 \ -270$

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 Fig. S35. $^{19}F{^{1}H}$ NMR spectrum of the compound **2ad** (CDCl₃, 376 MHz).

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 Fig. S41. ¹⁹F{¹H} NMR spectrum of the compound **2af** (CDCl₃, 376 MHz).

 $_{f_1(MA)}^{50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10 \ -20 \ -30 \ -30 \ -50 \ -60 \ -70 \ -80 \ -90 \ -100 \ -110 \ -120 \ -130 \ -140 \ -150 \ -160 \ -170 \ -180 \ -190 \ -200 \ -210 \ -220 \ -230 \ -240 \ -250 \ -260 \ -27$

 $_{50 \ 40 \ 30 \ 20 \ 10 \ 0}^{50 \ 40 \ 30 \ 20 \ 10 \ 0}^{-10 \ -10 \ -20 \ -30 \ -40 \ -50 \ -60 \ -70 \ -80 \ -90 \ -100 \ -110 \ -120 \ -130 \ -140 \ -150 \ -160 \ -170 \ -180 \ -190 \ -200 \ -210 \ -220 \ -230 \ -240 \ -250 \ -270 \$

S29

S32

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 Fig. S65. ¹⁹F{¹H} NMR spectrum of the compound **2bd** (CDCl₃, 376 MHz).

S35

Fig. S79. ¹³C{¹H} NMR spectrum of the compound **2cb** (CDCl₃, 101 MHz).

Fig. S81. ¹H NMR spectrum of the compound **2cc** (CDCl₃, 400 MHz).

 $_{f_{1}}^{50}$ $_{40}$ $_{30}$ $_{20}$ $_{10}$ $_{-10}$ $_{-20}$ $_{-30}$ $_{-40}$ $_{-50}$ $_{-60}$ $_{-70}$ $_{-80}$ $_{-90}$ $_{-100}$ $_{-110}$ $_{-120}$ $_{-130}$ $_{-160}$ $_{-170}$ $_{-180}$ $_{-190}$ $_{-200}$ $_{-210}$ $_{-220}$ $_{-230}$ $_{-240}$ $_{-250}$ $_{f_{1}}^{MA}$ Fig. S83. $^{19}F{^{1}H}$ NMR spectrum of the compound **2cc** (CDCl₃, 376 MHz).

Fig. S87. ¹H NMR spectrum of the compound **2ce** (CDCl₃, 400 MHz).

Fig. S93. ¹H NMR spectrum of the compound **2da** (CDCl₃, 400 MHz).

Fig. S97. ¹³C{¹H} NMR spectrum of the compound **2dc** (CDCl₃, 101 MHz).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (Mg) 30 20 50 40 Fig. S104. ¹⁹F{¹H} NMR spectrum of the compound **2ea** (CDCl₃, 376 MHz). 3.878 -1.9536.995 6.990 6.974 6.968 6.936 6.936 6.841 6.841 6.823 6.823 6.823 6.627 6.627 6.624 6.619 6.615 2.438 2.435 MeQ OMe 6.936 6.930 6.841 6.838 6.838 6.829 6.829 6.828 6.627 5.615 .619 .972 396 Me , 2.438° √, 2.438° √, 2.435 Me 2 CH₃ 1.00 2.05-2 OMe 7.0 6.8 f1 (мд) 6.9 6.7 6.6 3.00-2.46 2.44 2.42 f1 (мд) 3.00-1.00 0.98 2.05 1.00 2.96 2.89 3.03 4.0 7.5 7.0 6.5 5.0 4.5 f1 (мд) 3.5 3.0 2.5 2.0 8.5 8.0 6.0 5.5 1.5 10.0 9.5 9.0 1.0 0.5 0.0 -0

Fig. S112. HSQC NMR spectrum of the compound 2fa (101-400 MHz, CDCl₃).

Fig. S121. ¹³C{¹H} NMR spectrum of the compound **2fd** (CDCl₃, 101 MHz).

Fig. S122. ¹⁹F{¹H} NMR spectrum of the compound **2fd** (CDCl₃, 376 MHz).

Fig. S127. ¹³C{¹H} NMR spectrum of the compound **2ha** (CDCl₃, 101 MHz).

Fig. S139. ¹³C{¹H} NMR spectrum of the compound **2id** (CDCl₃, 101 MHz).

Fig. S141. ¹H NMR spectrum of the compound **2ja** (CDCl₃, 400 MHz).

 $50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10 \ -20 \ -30 \ -40 \ -50 \ -60 \ -70 \ -80 \ -90 \ -100 \ -120 \ -140 \ -160 \ -180 \ -200 \ -220 \ -240$ Fig. S149. ¹⁹F{¹H} NMR spectrum of the compound **2jc** (CDCl₃, 376 MHz).

Fig. S151. ¹³C{¹H} NMR spectrum of the compound **3kb** (CDCl₃, 101 MHz).

⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹²⁰ ⁻¹⁴⁰ ⁻¹⁶⁰ ⁻¹⁸⁰ ⁻²⁰⁰ ⁻²²⁰ ⁻²⁴⁰ Fig. S152. ${}^{19}F{}^{1}H$ NMR spectrum of the compound **3kb** (CDCl₃, 376 MHz).

S78

S80

⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²²⁰ ⁻²³⁰ ⁻²⁴⁰ ⁻²⁵⁰ ^{Fig.} Fig. S161. ¹⁹F{¹H} NMR spectrum of the compound **4ga** (CDCl₃, 376 MHz).

S86

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 . 50 -120 -140 -160 -180 -200 -220 -240 Fig. S170. ${}^{19}F{}^{1}H{}$ NMR spectrum of the compound **5fa** (CDCl₃, 376 MHz). -2.0274 OMe 7.293 -7.284 7.280 7.028 7.012 7.007 6.973 6.968 .123 .107 .102 - 6.902 - 6.881 ~ 6.849 ~ 6.828 .128 .034 .067 .061 - 3.938 3.889 - 3.907 - 3.823 OMe MeO MeQ OMe Me ĊF₃ 1.94 0.96/ 1.03 1.00 1.03 0.99 -66.0 7.15 7.10 7.05 f1 (мд) 7.30 6.85 7.25 7.20 7.00 6.95 6.90 CH_3 °5 | 2.92^{={}{ 3.02 3.01 3.09 2.90 1.03 1.00 1.03 0.99 1.94 0.99 0.96 3.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.1 Fig. S171. ¹H NMR spectrum of the compound **5fb** (CDCl₃, 400 MHz). 4.0 10.0 9.5 9.0 1.0 0.5 0.0

Fig. S173. $^{19}F\{^1H\}$ NMR spectrum of the compound **5fb** (CDCl₃, 376 MHz).

Fig. S175. ¹³C{¹H} NMR spectrum of the compound **5ja** (CDCl₃, 101 MHz).

⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹²⁰ ⁻¹⁴⁰ ⁻¹⁶⁰ ⁻¹⁸⁰ ⁻²⁰⁰ ⁻²²⁰ ⁻²⁴⁰ Fig. S179. ${}^{19}F{}^{1}H$ NMR spectrum of the compound **6fa** (CDCl₃, 376 MHz).

S92

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 Fig. S187. $^{19}F{^1H}$ NMR spectrum of the compounds α-6fc and β-6fc (CDCl₃, 376 MHz).

Fig. S188. NOESY H-H NMR spectrum of the compounds α-6fc and β-6fc (400 MHz, CDCl₃).

Fig. S189. COSY H-H NMR spectrum of the compounds α-6fc and β-6fc (400 MHz, CDCl₃).

Fig. S190. HOESY H-F NMR spectrum of the compounds α-6fc and β-6fc (400 MHz, CDCl₃).

f1 (мд)

Fig. S191. HSQC C-H NMR spectrum of the compounds α -6fc and β -6fc (101-400 MHz,

CDCl₃).

S98

Fig. S195. HSQC C-H spectrum of the compound 7b (CDCl₃, 101-400 MHz).

⁵⁰ 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 $f_{1}^{(MA)}$ Fig. S199. ¹⁹F{¹H} NMR spectrum of the compound **7d** (CDCl₃, 376 MHz).

Fig. S203. COSY H-H NMR spectrum of the mixture of α -7i and β -7i (CDCl₃, 400 MHz).

Fig. S204. NOESY H-H NMR spectrum of the mixture of α-7i and β-7i (CDCl₃, 400 MHz).

Fig. S205. HOESY F-H NMR spectrum of the mixture of α -7i and β -7i (CDCl₃, 376-400 MHz).

Fig. S206. HSQC C-H NMR spectrum of the mixture of α-7i and β-7i (CDCl₃, 101-400 MHz).

Fig. S207. ¹H NMR spectrum of the compound **8i** (CDCl₃, 400 MHz).

 $50 \ 40 \ 30 \ 20 \ 10 \ 0 \ -10 \ -20 \ -30 \ -40 \ -50 \ -60 \ -70 \ -80 \ -90 \ -100 \ -110 \ -120 \ -130 \ -140 \ -150 \ -160 \ -170 \ -180 \ -190 \ -200 \ -210 \ -220 \ -230 \ -240 \ -250 \ -170 \ -180 \ -170 \ -180 \ -190 \ -200 \ -210 \ -220 \ -240 \ -250 \ -250 \ -$

S107

Fig. S213. ¹³C{¹H} NMR spectrum of the compound **9i** (CDCl₃, 101 MHz).

S109

Fig. S225. HOESY H-F NMR spectrum of the compound 11i (CDCl₃, 400-376 MHz).

Fig. S226. HSQC C-H NMR spectrum of the compound 11i (CDCl₃, 101-400 MHz).

S115

Fig. S229. ¹H NMR spectrum of the compound **12i** (CDCl₃, 400 MHz).

Fig. S232. HOESY H-F NMR spectrum of the compound 12i (CDCl₃, 400 – 376 MHz).

Fig. S233. HSQC C-H NMR spectrum of the compound 12i (CDCl₃, 100 – 400 MHz).

S118

f1 (мд)

Fig. S235. NOESY H-H NMR spectrum of the compound 12i (CDCl₃, 400 MHz).

S120

Fig. S239. ¹H NMR spectrum of the compound **13ab** (CDCl₃, 400 MHz).

Fig. S242. HOESY F-H NMR spectrum of the compound 13ab (CDCl₃, 376 – 400 MHz).

Fig. S243. ¹H NMR spectrum of the compound Z-14i (CDCl₃, 400 MHz).

Fig. S246. HOESY H-F NMR spectrum of the compound Z-14i (CDCl₃, 400-376 MHz).

Fig. S250. HOESY H-F NMR spectrum of the compound *E*-14i (CDCl₃, 400-376 MHz).

Fig. S255. HOESY H-F NMR spectrum of the compound 15i (CDCl₃, 400 – 376 MHz).

Fig. S257. COSY H-H NMR spectrum of the compound 15i (CDCl₃, 400 MHz).

Copies of ¹H NMR Spectra of the compounds previously obtained by ourselves

Fig. S260. ¹H NMR spectrum of the compound **3ke** (CDCl₃, 400 MHz).

Fig. S262. Molecular structure of **2ac**, CCDC 2233369 (ellipsoid contour of probability levels is 50%).

Table S1. Crystal data and structure refinement for 2ac.				
Empirical formula	$C_{18}H_{15}F_{3}O$			
Formula weight	304.30			
Temperature/K	100(4)			
Crystal system	monoclinic			
Space group	$P2_{1}/n$			
a/Å	14.8404(12)			
b/Å	5.1873(5)			
c/Å	18.6784(10)			
α\°	90			
β/°	93.721(6)			
γ/°	90			
Volume/Å ³	1434.87(19)			
Z	4			
$\rho_{calc}g/cm^3$	1.409			
μ/mm^{-1}	0.955			
F(000)	632.0			
Crystal size/mm ³	0.42 imes 0.005 imes 0.005			
Radiation	$CuK\alpha \ (\lambda = 1.54184)$			
2Θ range for data collection/°	7.38 to 142.978			
Index ranges	$-17 \le h \le 18, -6 \le k \le 6, -22 \le l \le 22$			
Reflections collected	7791			
Independent reflections	2710 [$R_{int} = 0.0633$, $R_{sigma} = 0.0625$]			
Data/restraints/parameters	2710/0/201			
Goodness-of-fit on F ²	1.081			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0917, wR_2 = 0.2474$			
Final R indexes [all data]	$R_1 = 0.1219, wR_2 = 0.2780$			
Largest diff. peak/hole / e Å ⁻³	0.46/-0.47			
CCDC	2233369			

Fig. S263. Molecular structure of **9i**, CCDC 2248983 (ellipsoid contour of probability levels is 50%).

Table S2. Crystal data and structure refinement for 9i .				
Empirical formula	$C_{19}H_{13}F_{3}S$			
Formula weight	330.35			
Temperature/K	100.0(3)			
Crystal system	monoclinic			
Space group	C2/c			
a/Å	44.8162(4)			
b/Å	9.25160(10)			
c/Å	29.8662(2)			
$\alpha/_{\circ}$	90			
β/°	101.3840(10)			
γ/°	90			
Volume/Å ³	12139.54(19)			
Z	32			
$\rho_{calc}g/cm^3$	1.446			
μ/mm^{-1}	2.156			
F(000)	5440.0			
Crystal size/mm ³	0.48 imes 0.1 imes 0.06			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/°	6.038 to 139.986			
Index ranges	$-54 \le h \le 54, -10 \le k \le 11, -36 \le l \le 36$			
Reflections collected	77853			
Independent reflections	11500 [$R_{int} = 0.0324$, $R_{sigma} = 0.0177$]			
Data/restraints/parameters	11500/0/833			
Goodness-of-fit on F ²	1.033			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0325, wR_2 = 0.0963$			
Final R indexes [all data]	$R_1 = 0.0344, wR_2 = 0.0980$			
Largest diff. peak/hole / e Å ⁻³	0.28/-0.23			
CCDC	2248983			

Fig. S264. Molecular structure of **11i**, CCDC 2233370 (ellipsoid contour of probability levels is 50%).

Table S3. Crystal data and structure refinement for 11i.					
Empirical formula	$C_{20}H_{17}F_{3}O_{3}S$				
Formula weight	394.39				
Temperature/K	100(2)				
Crystal system	monoclinic				
Space group	$P2_1/c$				
a/Å	13.4778(2)				
b/Å	7.91980(10)				
c/Å	17.0401(3)				
α	90				
β/°	108.952(2)				
γ/°	90				
Volume/Å ³	1720.29(5)				
Z	4				
$\rho_{calc}g/cm^3$	1.523				
μ/mm^{-1}	2.136				
F(000)	816.0				
Crystal size/mm ³	0.09 imes 0.07 imes 0.05				
Radiation	$CuK\alpha (\lambda = 1.54184)$				
2Θ range for data collection/°	6.934 to 159.69				
Index ranges	$-17 \le h \le 17, -10 \le k \le 7, -21 \le l \le 20$				
Reflections collected	12865				
Independent reflections	$3629 [R_{int} = 0.0310, R_{sigma} = 0.0289]$				
Data/restraints/parameters	3629/0/246				
Goodness-of-fit on F ²	1.102				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0338, wR_2 = 0.0920$				
Final R indexes [all data]	$R_1 = 0.03\overline{69}, wR_2 = 0.0938$				
Largest diff. peak/hole / e Å ⁻³	0.40/-0.31				
CCDC	2233370				

Fig. S265. Molecular structure of **13ab**, CCDC 2233371 (ellipsoid contour of probability levels is 50%).

Table S4. Crystal data and structure refinement for 13ab.					
Empirical formula	$C_{19}H_{17}F_{3}O$				
Formula weight	318.32				
Temperature/K	100(2)				
Crystal system	monoclinic				
Space group	$P2_{1}/n$				
a/Å	5.85016(9)				
b/Å	11.07614(16)				
c/Å	23.2374(3)				
α/°	90				
β/°	93.4883(14)				
$\gamma/^{\circ}$	90				
Volume/Å ³	1502.93(4)				
Z	4				
$\rho_{calc}g/cm^3$	1.407				
μ/mm^{-1}	0.936				
F(000)	664.0				
Crystal size/mm ³	0.25 imes 0.1 imes 0.05				
Radiation	$CuK\alpha (\lambda = 1.54184)$				
2Θ range for data collection/°	7.624 to 140.888				
Index ranges	$-6 \le h \le 7, -13 \le k \le 13, -28 \le l \le 28$				
Reflections collected	15404				
Independent reflections	2871 [$R_{int} = 0.0476$, $R_{sigma} = 0.0314$]				
Data/restraints/parameters	2871/0/211				
Goodness-of-fit on F ²	1.073				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451, wR_2 = 0.1112$				
Final R indexes [all data]	$R_1 = 0.0513, wR_2 = 0.1155$				
Largest diff. peak/hole / e Å ⁻³	0.20/-0.28				
CCDC	2233371				

Fig. S266. Molecular structure of **15i**, CCDC 2233372 (ellipsoid contour of probability levels is 50%).

Table S5. Crystal data and structure refinement for 15i.					
Empirical formula	C ₁₂ H ₇ F ₃ OS				
Formula weight	256.24				
Temperature/K	100(2)				
Crystal system	monoclinic				
Space group	P2 ₁ /c				
a/Å	4.7366(2)				
b/Å	25.8695(8)				
c/Å	8.5888(4)				
α/°	90				
β/°	97.737(4)				
γ/°	90				
Volume/Å ³	1042.83(7)				
Ζ	4				
$\rho_{calc}g/cm^3$	1.632				
µ/mm ⁻¹	3.012				
F(000)	520.0				
Crystal size/mm ³	$0.12 \times 0.09 \times 0.04$				
Radiation	$CuK\alpha \ (\lambda = 1.54184)$				
2Θ range for data collection/°	6.834 to 152.446				
Index ranges	$-5 \le h \le 5, -18 \le k \le 32, -10 \le l \le 10$				
Reflections collected	4144				
Independent reflections	2115 [$R_{int} = 0.0331$, $R_{sigma} = 0.0468$]				
Data/restraints/parameters	2115/0/154				
Goodness-of-fit on F ²	1.039				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0402, wR_2 = 0.0944$				
Final R indexes [all data]	$R_1 = 0.0495, wR_2 = 0.0999$				
Largest diff. peak/hole / e Å ⁻³	0.66/-0.26				
CCDC	2233372				

Fig. S267. Molecular structure of **5ja**, CCDC 2248301 (ellipsoid contour of probability levels is 50%).

Table S6. Crystal data and structure refinement for 5ja .					
Empirical formula	$C_{20}H_{17}F_{3}O_{2}S$				
Formula weight	378.39				
Temperature/K	100(2)				
Crystal system	monoclinic				
Space group	P2 ₁				
a/Å	9.3648(5)				
b/Å	5.3613(3)				
c/Å	17.6629(10)				
α/°	90				
β/°	100.307(6)				
γ/°	90				
Volume/Å ³	872.50(9)				
Ζ	2				
$\rho_{calc}g/cm^3$	1.440				
μ/mm^{-1}	2.036				
F(000)	392.0				
Crystal size/mm ³	0.16 imes 0.12 imes 0.1				
Radiation	$CuK\alpha (\lambda = 1.54184)$				
2Θ range for data collection/°	5.086 to 135.914				
Index ranges	$-10 \le h \le 11, -6 \le k \le 6, -20 \le l \le 21$				
Reflections collected	5999				
Independent reflections	2820 [$R_{int} = 0.0575$, $R_{sigma} = 0.0716$]				
Data/restraints/parameters	2820/1/232				
Goodness-of-fit on F ²	1.058				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0693, wR_2 = 0.1825$				
Final R indexes [all data]	$R_1 = 0.0774, wR_2 = 0.1887$				
Largest diff. peak/hole / e Å ⁻³	1.04/-0.49				
CCDC	2248301				

Biological study data

Fig. S268. Selected compounds from this study to evaluate biological activity.

Fig. S269. Previously synthesized compounds subjected to biological activity evaluation [24,28].

Table S7. Preparation of common stock solutions of test objects.

Compound	Sample weight, mg	Solvent volume, mL	Concentration of common stock solution, µg/mL
171	5.1	4.980	1024
17m	3.9	3.809	1024
<i>cis</i> -17n	6.0	5.859	1024
trans-17n	3.3	3.223	1024
170	3.5	3.418	1024
17p	3.3	3.223	1024
17q	5.0	4.883	1024
17r	3.5	3.418	1024
<i>cis</i> -17s	3.3	3.223	1024
trans-17s	3.3	3.223	1024

<i>cis</i> -17t	3.2	3.125	1024
trans-17t	3.0	2.930	1024
18r	2.8	2.734	1024
17d	4.3	4.199	1024
17f	4.1	4.004	1024
17g	3.0	2.930	1024
17e	3.8	3.711	1024
17b	4.2	4.102	1024
2bf	2.7	2.637	1024
2bb	3.3	3.223	1024
2ba	3.5	3.418	1024
2bc	5.5	5.371	1024
2bd	4.8	4.688	1024
2bg	3.0	2.930	1024
2ae	2.5	2.441	1024
2ab 2ab	4.4	4.297	1024
2ai	4.1	4.004	1024
2ai	4.3	4.199	1024
2ah	3.4	3.320	1024
2.ag	2.0	1 953	1024
2ag 2ac	4.0	3 906	1024
2ac 2ad	3.3	3.223	1024
2200	21	2 051	1024
2aa 29f	3.0	2.031	1024
13ah	2.2	2.230	1024
13a0	2.2	2.116	1024
Qi	3.7	3 613	1024
91 8i	4.0	3 906	1024
11i	3.1	3.027	1024
2ia	4 1	4 004	1024
2ia 2ic	2.0	1.001	1024
2ib	2.0	2.832	1024
210 2id	1.9	1 855	1024
2ha 2ha	4.0	3 906	1024
200 2ea	2.2	2 148	1024
2eh	1.9	1.855	1024
2cb	2.5	2.441	1024
2cf	4.4	4.297	1024
2cd	2.4	2.344	1024
2ce	3.8	3.711	1024
2dd	3.0	2.930	1024
2da	2.5	2.441	1024
2dc	2.4	2.344	1024
Z-14i	2.6	2.539	1024
<i>E</i> 14i	2.0	1 953	1024
3kh	1.9	1.855	1024
Ric	3.2	3 125	1024
	<u> </u>	<u> </u>	1024
	1.5	1 562	1024
Ria	3.5	3 417	1024
Ja	5.5	5.11/	1027

3jd	2.1	2.050	1024
3ka	3.0	2.929	1024
3kd	1.6	1.562	1024
2db	4.1	4.004	1024
3ga	1.4	1.367	1024
3gb	1.5	1.465	1024
2jd	1.5	1.465	1024
2je	2.2	2.148	1024
2jb	1.3	1.269	1024
2ja	3.0	2.929	1024
2ga	1.6	1.562	1024
2gb	1.2	1.171	1024
2gc	2.9	2.832	1024
4ga	3.0	2.929	1024
4gb	1.4	1.367	1024
4gc	2.0	1.953	1024
7d	2.0	1.953	1024
2fd	2.2	2.148	1024
2fb	2.3	2.246	1024
4ff	2.0	1.953	1024
2fg	3.1	3.027	1024
2fc	2.0	1.953	1024
2fh	2.3	2.246	1024
6fe	2.8	2.734	1024
6fg	4.8	4.687	1024
5ga	5.8	5.664	1024
5fb	3.5	3.417	1024
6fd	4.5	4.394	1024
5fa	2.8	2.734	1024
5fc	2.1	2.050	1024
16ga	1.3	1.269	1024
6fb	2.0	1953	1024
6fa	2.4	2.343	1024
16ja	2.4	2.344	1024
5ja	4.2	4.102	1024

Table S8. Scheme for preparing working solutions of test objects for the microplate method.

Concentration of	Volume of		Resulting	Final concentration of the
the test object in	the stock	Volume of	concentration of the	test object in the wells of
the stock solution	solution,	nutrient broth,	test object in the	the plate with the addition
une stock solution,	mL	mL	working solution,	of the test strain of the
μg/IIIL			µg/mL	microorganism, µg/mL
1024	0,5	0,5	512	256
512	0,5	0,5	256	128
256	0,25	0,25	128	64
256	0,5	1,5	64	32
64	0,5	0,5	32	16
64	0,5	1,5	16	8

16	0,5	0,5	8	4
16	0,5	1,5	4	2
4	0,5	0,5	2	1

	1	2	3	4	5	6	7	8	9	10	11	12
					Test object №1							
Α	К-	К+	-	256	128	64	32	16	8	4	2	1
В	К-	К+	-	256	128	64	32	16	8	4	2	1
С	К-	К+	-	256	128	64	32	16	8	4	2	1
D	К-	К+	-	256	128	64	32	16	8	4	2	1
					Test object №2							
Ε	К-	К+	-	256	128	64	32	16	8	4	2	1
F	К-	К+	-	256	128	64	32	16	8	4	2	1
G	К-	К+	-	256	128	64	32	16	8	4	2	1
Η	К-	К+	-	256	128	64	32	16	8	4	2	1

Table S9. Distribution of test objects solutions in the wells of the plate.

Notes:

 $K\text{--}Culture\ medium\ control$

 $K\!\!+\!-$ Growth control of the test microorganism

"-" – empty cells

256–1 – the final concentration of the test object in μ g/mL.

Fig. S271. Plate inoculated with *E. coli* in the presence of test objects 3ka (№320), 3kd (№323).

Fig. S272. Plate inoculated with *S. aureus* in the presence of test objects **3ka** (№320), **3kd** (№323).

	MIC, µg/mL			
Compound	S. aureus	E. coli	C. albicans	
2ae	256	128	128	
2bd	256	128	128	
2aa	256	128	128	
2dd	128	128	128	
9i	>256	>256	128	
2ic	256	128	>256	
2dc	256	128	128	
2eb	256	128	128	
2ce	256	128	128	
2cb	256	128	128	
2af	256	128	128	
13aa	256	>256	128	
11i	>256	>256	128	
2ea	256	128	128	
2bg	256	128	128	
2ab	256	128	128	
2ag	256	128	>256	
2ad	256	128	128	
2cf	256	128	64	
2cd	256	128	128	
8i	>256	>256	128	
2ib	256	128	128	
2ah	256	128	128	

Table S10. Evaluation of the antimicrobial activity of the test objects.

13ab	>256	>256	>256
2id	256	256	>256
2ha	256	128	>256
2aj	256	128	128
2ai	256	128	128
2da	256	128	128
2ac	256	128	128
2ia	256	128	256
2ga	256	128	128
7d	256	128	128
2gb	256	128	128
2fc	256	128	128
5ga	256	128	128
6fb	256	128	128
5fb	256	128	128
6fa	256	128	128
16ga	256	128	128
6fg	256	128	128
2gc	256	128	128
2fd	256	128	128
2fg	256	128	128
4ff	256	128	128
6fe	256	128	128
2fb	256	128	128
4ga	256	128	128
6fd	256	128	128
5fa	256	128	128
2ja	256	128	128
2fh	256	128	128
5fc	256	128	128
4gc	256	128	128
4gb	256	128	128
trans-17s	256	128	128
17d	256	128	128
2bc	256	128	128
17r	>256	>256	128
2bb	256	128	128
17e	256	128	128
17g	256	128	128
<u>18r</u>	>256	>256	128
16ja	>256	>256	>256
5ja	>256	>256	>256
171	256	128	128
1/m	256	128	128
trans-1/h	256	128	128
170	250	128	200
<i>ClS</i> -1/l	250	128	128
17f	230	120	120
1/1	230	120	120
/y	250	120	120
2ha	250	120	120
17h	256	128	120
2.hf	256	120	128
-01	200	120	120

cis-17s	256	128	128
17p	256	128	128
3kb	128	128	128
3jc	256	256	128
Z-14i	256	256	128
<i>E</i> -14i	256	256	128
3kc	256	256	128
3jb	256	256	128
	256	128	128
3jd	256	256	128
2db	256	256	128
3ga	256	256	128
3ka	256	256	128
3kd	256	256	128
2jd	256	128	128
3gb	256	128	128
2jb	256	128	128
2je	256	256	128