Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

Carbon dots/layered zirconium phosphate composites for the

adsorption-detection integration of iron ions

Juan Hou^{a*}, Xu Gao^b, Guijie Li^c, Huiling Liu^b, Qinqin Chen^b, Jing Sun^{a*}, Guang Yang^{b*}

^a Jilin Provincial International Joint Research Center of Photofunctional Materials and Chemistry,

School of Chemistry and Environmental Engineering, Changchun University of Science and

Technology, Changchun 130022, PR China

^b Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry

University, 26 Hexing Road, Harbin 150040, PR China

^c Jilin province product quality supervision and inspection institute, 2699 Yiju Street, Changchun

130103, PR China

*Corresponding author

E-mail: houjuan0503@126.com; sj-cust@126.com; guangyang@nefu.edu.cn

Fig. S1 Full survey (a) and high-resolution XPS of C_{1s} (b), N_{1s} (c), O_{1s} (d), Zr_{3d} (e) and P_{2p} (f) of CDs/ZrP composites.

Fig. S2 C1s (a), O1s (b) and N1s (c) XPS spectrum of the CDs and O1s (d), P1s (e) and Zr (f) XPS spectrum of the ZrP.

Fig. S3 The TG curves of ZrP and CDs/ZrP composites.

Fig. S4 Fluorescence spectra of CDs/ZrP at λ_{ex} =320~400 nm. Inset shows photographs of CDs/ZrP under visible light (a) and 365 nm UV beam (b).

Fig.S5 Effect of ion strength (a), continuous irradiation of 365 nm UV beam (b) and storage for 15 days at room temperature (c) on the fluorescence intensity of the CDs/ZrP composites.

Fig.S6 (a) The adsorption isotherms of ZrP fitted by Langmuir and Freundlich model; (b-c) Adsorption kinetics of ZrP fitted by pseudo-first-order and pseuso-second-order models.

Fig. S7 Removal efficiency for durability test of CDs/ZrP.

Fig. S8 FL decay spectra (a) and Zeta potential (b) of CDs/ZrP before and after Fe^{3+} addition.

Fig. S9 The effect of reaction time (a), pH value (b) and temperature (c) on the quenching performance.

Fig. S10 Selectivity experiments of CDs/ZrP towards cation ions (a), anions (b) and small molecules (c) (concentration= 500μ M).

Sample	La	ngmuir	Freundlich			
CDs/ZrP	$Qmax(mg/g^{-1})$	$K_L(L/g^{-1})$	R ²	$K_F(L^n/mg^{n-1})$	n	R ²
	93.02	0.0662	0.9903	25.46	4.671	0.8808

Table S1 Langmuir and Freundlich models fitting parameters of CDs/ZrP

Table S2 The Pseudo-first-order and Pseudo-second-order dynamics fitting parameters of CDs/ZrP

Sample	Pseudo-first-order model			Pseudo-second-order model			
CDs/ZrP	Q _e (mg/g)	$K_1(min^{-1})$	R ²	$Q_e(mg/g^{-1})$	$K_2(g/mg^{-1}/min^{-1})$	R ²	
	92.53	0.0571	0.9303	101.9	0.0081	0.9990	

Samples	Found without spiking/µM	Spiked/µM	$Found/\mu M$	Recovery(%)	RSD
		1	0.939	93.9	2.7
Purified	/	20	20.04	100.2	2.3
water	/	50	52.40	108	1.6
		20	37.88	98.8	2.4
Tap water	18.13	50	73.41	110.1	1.7
		3	5.71	99.3	3.2
Majiagou	2.73	15	16.63	92.7	2.1
river	2.75	100	104.3	101.6	1.4
		5	9.14	98.6	3.2
Nanhu lake	4.21	10	13.98	97.7	2.9
Vitona river	Q 11	10	19.02	109.1	1.7
	0.11	50	57.72	99.2	2.1

Table S3. Fe³⁺ detection in real water samples

Probe	Linear range	Detection limit	RSD (%)	Recovery (%)	Reuse times	Adsorption capacity (mg·g ⁻¹)	Removal efficiencies (%)	Ref.	
N, P-CDs	5-100 nM	1.8 nM	<3.2	88.4-102.4	_	_	_	[2]	-
CDs-MoF	0-100 ppm	2.3 ppb	_	_	_	_	_	[3]	
1,3,4-oxadiazole derivative	_	3 µM	_	94.85-106.11	_	_	_	[4]	
N, S-CDs	6-200 μM	80 nM	<4.12	_	_	_	_	[5]	
Tb-MOF	3.3×10 ⁻⁴ -0.02 mM	80 nM	<1.051	93.57-106.67	>5	_	_	[9]	
S-CDs	1-500 μM	100 nM	_	_	_	_	_	[10]	
Graphitic CQDs	2 nM-5 µM	2 nM	_	_	_	_	_	[11]	
CDs@OMS	25-750 μΜ	_	_	_	_	_	_	[19]	
WBPU-N,CDs film	0-200 μM	2.19 µM	_	_	_	-	_	[20]	
TPA-SO-OH	0-50 μΜ	13 nM	_	_	_	_	_	[S1]	

Table S4. Comparison of linear range and detection limit for Fe³⁺ assays recently reported in other literatures.

Chitosan nanoparticles- Rhodamine B	10 ⁻⁵ -10 ⁻² M	10 ⁻⁵ mol/mL	-	-	-	-	_	[82]
Dual-emission CDs	25-30 µM	0.8 μΜ	<4.7	93-107	_	_	_	[S3]
UCNPs@CDs	5-80 µM	1.53 μM	<3.65	96.07-110.03	-	-	_	[S4]
Eu(BTB)MOFs	0.5-80 μΜ	0.5 μΜ	_	_	_	-	-	[85]
Eu:Y ₂ O ₃	10-90 µM	63.2 nM	<5.41	95-105	_	_	_	[S6]
ZnMOF-74	0.1-100 μΜ	40 nM	_	104.1-108.9	_	_	_	[S7]
CDs/ZnO/CdS	1-50 µM	172 nM	<3.4%	98.8-103.8	_	_	_	[S8]
Graphene QDs	3.5-670 µM	1.6 µM	<6%	_	_	_	_	[89]
CDs/ZrP	0.25-80 μM	80 nM	<3.2	92.7-110.1	>13 cycles	93.01 mg·g ⁻¹	92.3-98.6	proposed method

S1 J. Yu, S. Qiu, K. Zhang, T. Zhou, X. Ban, Y. Duan, D. Jia, Q. Zhu and T. Zhang, *J. Mol. Struct.*, 2022, **1251**, 132074. S2 Z. Liu, N. Li, P. Liu, Z. Qin and T. Jiao, *ACS Omega*, 2022, **7**. 5570-5577.

- S3. Y. Wang, S. Lao, W. Ding, Z. Zhang and S. Liu, Sensor. Actual. B-Chem., 2019, 284, 186-192.
- S4. Y. Sun, X. Zhang, C. Zhao, X. Liu, Y. Shu, J. Wang and N. Liu, Anal. Chim. Acta, 2021, 1183, 338973.
- S5. X. Hou, X. Wen, J. He and X. Hou, *Luminescence*, 2022, 37, 2050-2058.
- S6. A. Dwivedi, M. Srivastava, A. Srivastava and S. K. Srivastava, Spectrochim. Acta A., 2021, 260, 119942.
- S7. L. Hou, Y. Song, Y. Xiao, R. Wu and L. Wang, Microchem. J., 2019, 150, 104154.
- S8. Z. Nan, C. Hao, X. Zhang, H. Liu and R. Sun, Spectrochim. Acta A., 2020, 228, 117717.
- S9. Y. Zhang, X. Yang, Y. Pu, W. Cheng, S. Lin, Z. Shao and X. Liao, J. Fluoresc., 2019, 29, 541-548.