The K-doped $g-C_3N_4$ decorated with Ti_3C_2 for efficient photocatalytic H_2O_2 production

Figure S1. XRD patterns of KCN at different amounts.

Figure S2. XRD patterns of KCT5-X at different amounts.

Figure S3. UV-visible diffuse reflection spectrum of CNTX.

Figure S4. UV-visible diffuse reflection spectrum of KCNX.

Figure S5. UV-visible diffuse reflection spectrum of KCT5-X.

Table S1. Specific surface area	ı, pore volume and	1 average pore s	ize of g-C3N4,	CNT5,
	KCN5, KCT5	5-5		

S_{BET} (m ² /g)	Pore volume (cm ³ /g)	Average pore size (nm)
81.77	0.51	21.26
59.13	0.29	25.35
22.10	0.11	21.29
25.76	0.12	19.73
	S _{BET} (m ² /g) 81.77 59.13 22.10 25.76	SBET (m²/g) Pore volume (cm³/g) 81.77 0.51 59.13 0.29 22.10 0.11 25.76 0.12

Figure S6. XPS spectra of KCT5-5 sample

Figure S7. Photocatalytic H₂O₂ production under visible light irradiation at KCNX.

Figure S8. XRD patterns of KCNT5-5 before and after cycle testing.

Figure S9. FTIR spectra of KCNT5-5 before and after cycle testing.

Table S2. Fitted decay time constants of CN, CNT5, KCN5 and KCT5-5 from TRPLspectra.

	τ_1/ns	\mathbf{A}_1	τ_2/ns	\mathbf{A}_{2}	τ_n/ns
CN	1.03	84708.58	6.44	0.71	1.03
CNT5	1.39	3919.54	8.39	0.83	1.40
KCN5	1.59	1438.28	7.46	1.18	1.61
KCT5-5	0.65	71.81	3.45	18.15	2.25

$$\tau_{n} = (A_{1}\tau_{1}^{2} + A_{2}\tau_{2}^{2}) / (A_{1}\tau_{1} + A_{2}\tau_{2})$$

Figure S10. Measuring the concentrations of generated H_2O_2 by iodometry.

	K _f (10 ¹ μmol L ⁻¹ min ⁻¹)	K _d (10 ⁻³ min ⁻¹)
CN	0.13	8.33
CNT5	0.41	5.57
KCN5	3.35	4.34
KCT5-5	4.54	3.36

Table S3. Calculated $K_{\rm f}$ and $K_{\rm d}$ values of CN, CNT5, KCN5 and KCT5-5.

Table S4. Comparison of H2O2 production rates achieved by recentlyreported photocatalytic systems

Photocatalysts	Reaction solution	H_2O_2 yield (µmol g ⁻¹ h ⁻¹)	Ref.
MIL-125-NH ₂	BNOH	800	[1]
Cu-doped g-C ₃ N ₄	Water	1130	[2]
Ti ₃ C ₂ QDs/g-C ₃ N ₄	EA	560.7	[3]
Mn ₃ O ₄ /Co ₉ S ₈	Water	270	[4]
S-doped-C/CdS	Water	712.5	[5]
Thiourea	W7-4-m	(52.(2	[(]]
functionalized CTF	water	055.02	[0]
KH ₂ PO ₄ /g-C ₃ N ₄	10%EA	500	[7]
KPF6-C ₃ N ₄	EA	300	[8]
ZnO nanorods	EA	285	[9]
K-doped g-	100/ ID A	1126.67	This was als
C ₃ N ₄ /Ti ₃ C ₂	10%1PA	1130.0/	I IIS WORK

Figure S11. Schematic illustration of the band structure of CN and KCN5.

Reference

- Isaka Y, Kawase Y, Kuwahara Y, et al. Two-phase system utilizing hydrophobic metal– organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition, 2019, 58(16): 5402-5406.
- [2] Hu S, Qu X, Li P, et al. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites[J]. Chemical Engineering Journal, 2018, 334: 410-418.
- [3] Lin S, Zhang N, Wang F, et al. Carbon vacancy mediated incorporation of Ti₃C₂ quantum dots in a 3D inverse opal g-C₃N₄ Schottky junction catalyst for photocatalytic H₂O₂ production[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 481-488.
- [4] Zhang H, Bai X. Photocatalytic production of hydrogen peroxide over Z-scheme Mn₃O₄/Co₉S₈ with p-n heterostructure[J]. Applied Catalysis B: Environmental, 2021, 298: 120516.
- [5] Lee J H, Cho H, Park S O, et al. High performance H₂O₂ production achieved by sulfurdoped carbon on CdS photocatalyst via inhibiting reverse H₂O₂ decomposition[J]. Applied Catalysis B: Environmental, 2021, 284: 119690.
- [6] Wu C, Teng Z, Yang C, et al. Polarization engineering of covalent triazine frameworks for

highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water[J]. Advanced Materials, 2022, 34(28): 2110266.

- [7] Tian J, Wu T, Wang D, et al. One-pot synthesis of potassium and phosphorus-doped carbon nitride catalyst derived from urea for highly efficient visible light-driven hydrogen peroxide production[J]. Catalysis Today, 2019, 330: 171-178.
- [8] Kim S, Moon G-h, Kim H, et al. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H₂O₂ under visible light[J]. Journal of Catalysis, 2018, 357: 51-58.
- [9] Jiang Z, Zhang Y, Zhang L, et al. Effect of calcination temperatures on photocatalytic H₂O₂production activity of ZnO nanorods[J]. Chinese Journal of Catalysis, 2022, 43(2): 226-233.