Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information (SI):

Etching-assisted synthesis of Ni/Ni single atoms anchored porous graphitic nanocarbons for improved hydrogen evolution reaction

Liangliang Feng^{a,b*}, Yuhang Li^a, Changle Fu^a, Dongming Li^a, Jianfeng Huang^{a*}, Hongyan Yin^a, Liyun Cao^a, Danyang He^{c*}

^a School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and

Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an

Shaanxi 710021, P.R. China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

^c School of Materials Science and Engineering, Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an, Shaanxi Province 710065, P.R. China

* Corresponding authors.

E-mail addresses: fengll@sust.edu.cn (L. Feng), huangjf@sust.edu.cn (J. Huang), hedy@xsyu.edu.cn (D. He).

Number of pages: 7

Number of figures: 8

Number of tables: 1

Containing 5 pages, 6 Figures

Additional images and data:

Fig. S1 Single cycle CV curve of Hg/Hg₂Cl₂ electrode calibration in 1 M KOH at 25 °C.

Fig. S2 Polarization curves of Ni/Ni_{-SA}-NC prepared with different Ni/Al ratio in alkaline environment.

Fig. S3 (a), (b), (c) SEM images of the Ni/Ni-SA-NC and (d), (e), (f) SEM images of the Ni/C.

Fig. S4 (a) Survey XPS spectrum and (b) the comparative contents of different N species of Ni/Ni. _{SA}-NC and Ni/C.

Fig. S5 (a) CVs of Ni/Ni_{-SA}-NC, (b) CVs of Ni/C.

Fig. S6 I-t curve obtained for HER with Ni/Ni_{-SA}-NC at the current density of 430 mA/cm² in alkaline media (pH 14).

Fig. S7 Polarization curves of Ni/Ni-SA-NC before and after 5000 cycles.

Fig. S8 (a) N 1s XPS spectrum and (b) Ni 2p XPS spectrum of Ni/Ni-SA-NC after stability test.

 Table S1 Comparison of HER performance between the results from the present research with

 other recently-reported single-atom electrocatalysts in 1 M KOH.

Fig. S1 Single cycle CV curve of Hg/Hg₂Cl₂ electrode calibration in 1 M KOH at 25 °C.

Fig. S2 Polarization curves of Ni/Ni_{-SA}-NC prepared with different Ni/Al ratio in alkaline environment.

Fig. S3 (a), (b), (c) SEM images of the Ni/Ni_{-SA}-NC and (d), (e), (f) SEM images of the Ni/C.

Fig. S4 (a) Survey XPS spectrum and (b) the comparative contents of different N species of Ni/Ni. _{SA}-NC and Ni/C.

Fig. S5 (a) CVs of Ni/Ni_{-SA}-NC, (b) CVs of Ni/C.

Fig. S6 I-t curve obtained for HER with Ni/Ni_{-SA}-NC at the current density of 430 mA/cm² in alkaline media (pH 14).

Fig. S7 Polarization curves of Ni/Ni-SA-NC before and after 5000 cycles.

Fig. S8 (a) N 1s XPS spectrum and (b) Ni 2p XPS spectrum of Ni/Ni_{-SA}-NC after stability test.

	HER catalysts	Electrolyte	Overpotentials	Stability	References
1	Ni/Ni _{-SA} -NC	1 M KOH	$159 \text{ mV}@10 \text{ mA cm}^{-2}$	50 h	In this work
2	MOF-Mo _{SA} W _{SA}	1 M KOH	$57 \text{ mV}@10 \text{ mA cm}^{-2}$	-	Nano Energy 2023,
					112, 108450
3	Ni-N-C-250	1 M KOH	400 mV@10 mA cm ⁻²	1000 cycles	Nano Energy 2021,
					83, 105850.
4	Co _{SA} +	1 M KOH	$250 \text{ mV}@10 \text{ mA cm}^{-2}$	10 h	Small 2020 , 16,
	Co ₉ S ₈ /HCNT				1906735.
5	Ni@Co/N/C	1 M KOH	181 mV@10 mA cm ⁻²	-	Angew. Chem. Int.
					Ed. 2019, 58, 11868.
6	SACo-N/C	1 M KOH	178 mV@10 mA cm ⁻²	35000 s	Sci. Bull. 2019, 64,
					1095.
7	Co-N/C	1 М КОН	219 mV@10 mA cm ⁻²	24h	ACS Catal. 2019, 9,
					83-97.
8	Ni NP/Ni-N-C	1 М КОН	147 mV@10 mA cm ⁻²	10 h	Energy Environ. Sci.
					2019 ,12, 149-156
9	Fe-N ₄ SAs/NPC	1 М КОН	202 mV@10 mA cm ⁻²	70000 s	Angew. Chem. Int.
					Ed. 2018 , 57, 8614.

Table S1 Comparison of HER performance between the results from the present research with

other recently-reported single-atom electrocatalysts in 1 M KOH.