High dispersed Pd nanoparticles anchored on carbon nitride for

hydrogen production of formic acid

Qing-Fang Deng*, Kun Qian, Jingyu Zhang, Shangkun Ma, Jianjiao Xin, Fengjuan Cui,

Chunling Zuo, Lihua Jia*

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China

Experimental

Synthesis of CN-UW

20 g urea was dissolved in 20 mL of deionized water. The solution was then transferred to a 100 mL capped ceramic crucible and calcined at 823 K for 4 hours. After cooling the crucible to ambient temperature, a light-yellow product of ultrathin CN nanosheets was formed, designated as $CN-U_1W_1$. Finally, $CN-U_1W_x$ were produced by varying the mass ratio of urea in solution (m_{urea}: m_{water} =1:2, 1:3, 1:5, and 1:7), and the corresponding products were labeled as $CN-U_1W_3$, $CN-U_1W_5$, and $CN-U_1W_7$, respectively. The same procedure was used to make CN-U without the need of water.

Synthesis of Pd/CN-UW

Ultrasonic treatment was used to disperse 0.27 g of $CN-U_1W_1$ in 60 mL of H₂O. Next, 0.065g of the metal precursor Pd(NO₃)₂ was added to the suspension, which was then magnetically stirred for three hours. The mixture was injected with 10 mL (0.3M) of NaBH₄ solution and vigorously stirred for four hours prior to centrifugation and washing with deionized water three times. The catalysts were then dried for 24 hours at 353 K. A series of Pd/CN- U₁W_x catalysts were also synthesized using the same method, and the resulting products were labeled Pd/CN-U₁W₁, Pd/CN-U₁W₃, Pd/CN-U₁W₅, Pd/CN-U₁W₇ and Pd/CN-U, respectively.

Characterizations

Using a Bruker D8 Advance diffractometer equipped with Cu Kα radiation at 40 kV and 50 mA over a scanning range of 3-80° (2θ), X-ray diffraction (XRD) patterns of the test samples were acquired. Using a Tecnai G2 TF30 transmission electron microscope (TEM) with an acceleration voltage of 300 kV, the morphologies and particle sizes of the samples were examined. The materials were analyzed by X-ray photoelectron spectroscopy (XPS) using a VGA ESCALAB 250 spectrometer (Thermo Electron, UK) equipped with a non-monochromatic Al Kα X-ray source (1486 eV). As a reference for calibrating the binding energies, the carbonaceous C 1s line (284.8 eV) was used. On the Agilent 5800, the inductively coupled plasma-optical emission spectrometer (ICP-

OES) was measured.

Catalytic activity tests for FA dehydrogenation (FAD)

For the catalytic experiment, 50 mg of catalyst was dissolved in deionized water in a round-bottom flask. The reaction flask was attached to the water-filled gas burette in order to measure the amount of gas produced. FA/SF (sodium formate) reaction liquid ($n_{FA}/n_{SF} = 1:8$; FA = 2 mmol) was fed into the flask with magnetic stirring at 348 K in an ambient environment and gas production commenced.

Fig. S1 TEM image of CN-U₁W₅.

Fig. S2 XPS survey spectra of Pd/CN-U₁W₅.

Fig. S3 The relationship of the TOF and surface pyridinic N/Pd molar ratio

Fig. S5 XPS spectra of (a) N and (b) Pd (c) C 1s and (d) O 1s in Pd/CN-U₁W₅ after cycling. Table S1 Comparison of catalytic performance of different catalysts for hydrogen generation from

Catalysts	T/K	Additive	TOF/h ⁻¹	Reference	E _a (kJ/mol)
$Ag_9Pd_{91}/g\text{-}C_3N_4$	323	HCOONa	480	[S1]	25.8
PdAg/C-FA	298	HCOONa	90	[S2]	-
C-Pd ₁ Ag ₁ BNSs	323	HCOONa	378	[S3]	-
Ag ₁₈ Pd ₈₂ @ZIF-8	353	HCOONa	580	[S4]	51.4
AgPd@MIL-100(Fe)	298	-	58	[85]	-
Pd/mpg-C ₃ N ₄	298	-	144	[S6]	29.1
Pd/CN-U1W5	348	HCOONa	1058	this work	29.7

FA.

Table S2 The content of Pd and N-containing species of Pd/CN-U1W5 catalyst before and after

arvalin a

cycling.									
Sample	Proportion of peak area								
	Pd ²⁺	Pd ⁰	pyridinic N	pyrrolic N	graphitic N	π excitation			
Pd/CN-U ₁ W ₅	0.462	0.538	0.756	0.119	0.077	0.047			
$Pd/CN-U_1W_5(3 \text{ cycles})$	0.405	0.595	0.635	0.173	0.149	0.043			

[S1] F. Yao, X. Li, C. Wan, L. Xu, Y. An, M. Ye, Z. Lei, Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst, Appl. Surf. Sci. 426 (2017) 605-611.

[S2] Y. Huang, J. Xu, T. Long, Q. Shuai, Q. Li, Reducing Agent-Structure-Activity Relationship of PdAg/C Catalysts in Formic Acid Decomposition for Hydrogen Generation, J. Nanosci. Nanotechnol. 17 (2017) 3798-3802.

[S3] C. Hu, X. Mu, J. Fan, H. Ma, X. Zhao, G. Chen, Z. Zhou, N. Zheng, Interfacial Effects in PdAg Bimetallic Nanosheets for Selective Dehydrogenation of Formic Acid, ChemNanoMat 2 (2016) 28-32. [S4] H. Dai, B. Xia, L. Wen, C. Du, J. Su, W. Luo, G. Cheng, Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid, Appl. Catal. B: Environ.165 (2015) 57-62.

[S5] F. Ke, L. Wang, J. Zhu, An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid, Nanoscale 7 (2015) 8321-8325.

[S6] J. H. Lee, J. Ryu, J. Y. Kim, S. W. Nam, J. H. Han, T. H. Lim, S. Gautam, K. H. Chaec, C. W. Yoon, Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride, J. Mater. Chem. A 2 (2014) 9490-9495.