Selective Dye Sorption and Metal Ions Sensing Behaviours of a New Cd-based MOF

Priyanka Manna,^a Avantika Hasija,^b Deepak Chopra^b and Partha Mahata^{a*}

^aDepartment of Chemistry, Jadavpur University, Kolkata-700032, India. Email: <u>parthachem@gmail.com</u>

^bCrystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science

Education and Research Bhopal, Bhopal By-Pass Road, Bhopal, MP 462066, India

ELECTRONIC SUPPLEMENTARY INFORMATION

*Corresponding Authors, E-mail: parthachem@gmail.com

Fig. S1: Powder XRD (CuKα) patterns of [Cd(PDA)(L)₂], **1**: (a) simulated from single crystal X-ray data, (b) experimental.

Fig. S3: Thermogravimetric analysis (TGA) of [Cd(PDA)(L)₂], 1, in nitrogen atmosphere.

Table S1: Selected Bond Angles (deg) observed in [Cd(PDA)(L)₂], 1.

Angle	Amplitude (°)
O (1) -Cd(1)-O(1) # 1	83.9 (3)
O (1) -Cd(1)-N(3) # 2	91.35 (17)
O (1) # 1 -Cd(1)-N(3) # 2	91.36 (17)
O (1) -Cd(1)-N(1)	91.57 (16)
O (1) # 1-Cd(1)-N(1)	91.57 (16)
N (3) # 2-Cd(1)-N(1)	176.1 (2)
O (1) -Cd(1)-N(2)	137.93 (13)
O (1) # 1-Cd(1)-N(2)	137.93 (13)
N (3) # 2-Cd(1)-N(2)	91.3 (3)
N (1) -Cd(1)-N(2)	84.7 (2)
O (1) -Cd(1)-O(2)	53.85 (17)
O (1) # 1-Cd(1)-O(2)	137.72 (18)
N (3) # 2-Cd(1)-O(2)	91.91 (13)
N (1) -Cd(1)-O(2)	87.70 (13)
N (2) -Cd(1)-O(2)	84.10 (11)
O (1) -Cd(1)-O(2) # 1	137.72 (17)
O (1) # 1 -Cd(1)-O(2) # 1	53.85 (17)
N (3) # 2 -Cd(1)-O(2) # 1	91.91 (13)
N (1) -Cd(1)-O(2)	87.70 (13)
N (2) -Cd(1)-O(2)	84.10 (11)
O (1) -Cd(1)-O(2) # 1	137.72 (17)
O (1) # 1 -Cd(1)-O(2) # 1	53.85 (17)
N (3) # 2 -Cd(1)-O(2) # 1	91.91 (13)
N (1) -Cd(1)-O(2) # 1	87.70 (13)
N (2) -Cd(1)-O(2) # 1	84.10 (12)
O (2) -Cd(1)-O(2) # 1	167.7 (2)

Symmetry transformations used to generate equivalent atoms:

For 1: #1 -x+1, y, z; #2 -x+1, -y+1, -z+1.

Fig. S4: Figure shows the network structure based on 3-connected L ligands and four connected Cd^{2+} ions of $[Cd(PDA)(L)_2]$, 1.

Fig. S5: UV-Vis absorption spectra of Orange G (OG) during the time dependent sorption study using compound **1**.

Fig. S6: UV-Vis absorption spectra of Methyl Orange (MO) during the time dependent sorption study using compound 1.

Fig. S7: UV-Vis absorption spectra of Methylene Blue (MB) during the time dependent sorption study using compound **1**.

Fig. S8: UV-Vis absorption spectra of Rhodamine B (RhB) during the time dependent sorption study using compound 1.

Fig. S9: Figure shows the photographs of colour intensity changes of the RBBR during the sorption study: (a) initial solution, (b) after 5 min, (c) after 10 min, (d) after 30 min, (e) after 60 min, (f) after 120 min, (h) after 180 min, (h) after 240 min, (i) after 300 min.

Fig. S10: Figure shows the photographs of colour intensity changes of the OG during the sorption study: (a) initial solution, (b) after 5 min, (c) after 10 min, (d) after 30 min, (e) after 60 min, (f) after 120 min, (h) after 180 min, (h) after 240 min, (i) after 300 min.

Fig. S11: Figure shows the photographs of colour intensity changes of the MO during the sorption study: (a) initial solution, (b) after 5 min, (c) after 10 min, (d) after 30 min, (e) after 60 min, (f) after 120 min, (h) after 180 min, (h) after 240 min, (i) after 300 min.

Fig. S12: Figure shows the photographs of colour intensity changes of the MB during the sorption study: (a) initial solution, (b) after 5 min, (c) after 10 min, (d) after 30 min, (e) after 60 min, (f) after 120 min, (h) after 180 min, (h) after 240 min, (i) after 300 min.

Figure shows the photographs of colour intensity changes of the RhB during the sorption study: (a) initial solution, (b) after 5 min, (c) after 10 min, (d) after 30 min, (e) after 60 min, (f) after 120 min, (h) after 180 min, (h) after 240 min, (i) after 300 min.

Table S2: Pseudo-second-order kinetic parameters for RBBR dye sorption into [Cd(PDA)(L)₂], 1.

Adsorbent	$q_e(mg g^{-1})$	K_2 (h g mg ⁻¹)	R ²
Cd-MOF	31.23	0.292	0.998
	61.50	0.112	0.996
	93.63	0.051	0.995
	123.15	0.056	0.997
	152.20	0.042	0.997

Table S3: Parameters of Langmuir model for RBBR dye sorption into $[Cd(PDA)(L)_2]$, 1.

Adsorbent	Dye	K_L (L mg ⁻¹)	$Q_m (mg g^{-1})$	R ²
Cd-MOF	RBBR	0.071	263.15	1

Materials	Efficiency (%)	Time	Ref.
NMIL88(Fe)-Lac and HS NMIL88(Fe)-Lac	90.8 and 92.0	3 h and 2 h	79
ZIF-8 and ZIF-67	98 and 95	2 h	80
TiO ₂ -ZrO ₂ - Laccase and TiO ₂ - ZrO ₂ -SiO ₂ - Laccase	90 and 76	24 h	81
Magnetic copper alginate beads	75.8	4 h	82
CS-SA/ALG/MTN	54.3	¹ / ₂ h	83
Immobilized laccase	64	48 h	84
PU microspheres	64.1	6 h	85
Trametes maxima IIPLC-32	92.3	—	86
Amberlyst A21	89.23	2½ h	87
Thuja orientalis (ACTOL)	82	5 h	88
$[Cd(PDA)(L)_2]$	95	5 h	This work

Table S4: A Summary of RBBR dye sorption using various materials.

Fig. S14: Powder XRD (CuK α) patterns of [Cd(PDA)(L)₂], 1: (a) simulated from single crystal

X-ray data, (b) experimental. (c) RBBR@1 after 300 min.

Fig. S15: Absorption spectrum of [Cd(PDA)(L)₂], 1.

Fig. S16: Emission spectra of 1 in solid state ($\lambda_{ex} = 300 \text{ nm}$).

Fig. S17: Emission spectra of 1,4-phenylenediacetic acid in solid state ($\lambda_{ex} = 263$ nm).

Fig. S18: Emission spectra of 2,4,5-tri-4-pyridyl-1H-imidazole in solid state ($\lambda_{ex} = 300$ nm).

Fig. S19: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Cd^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Cd^{2+} ions in the medium is indicated in the legend.

Fig. S20: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Cu^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Cu^{2+} ions in the medium is indicated in the legend.

Fig. S21: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Mg^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Mg^{2+} ions in the medium is indicated in the legend.

Fig. S22: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Ca^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Ca^{2+} ions in the medium is indicated in the legend.

Fig. S23: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Co^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Co^{2+} ions in the medium is indicated in the legend.

Fig. S24: Emission spectra of 1 dispersed in water upon incremental addition of water solution of K⁺ ions ($\lambda_{ex} = 300$ nm). Final concentration of K⁺ ions in the medium is indicated in the legend.

Fig. S25: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Mn^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Mn^{2+} ions in the medium is indicated in the legend.

Fig. S26: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Pb²⁺ ions ($\lambda_{ex} = 300$ nm). Final concentration of Pb²⁺ ions in the medium is indicated in the legend.

Fig. S27: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Zn^{2+} ions ($\lambda_{ex} = 300$ nm). Final concentration of Zn^{2+} ions in the medium is indicated in the legend.

Fig. S28: Emission spectra of 1 dispersed in water upon incremental addition of water solution of Na⁺ ions ($\lambda_{ex} = 300$ nm). Final concentration of Na⁺ ions in the medium is indicated in the legend.

Fig. S29: The plot of the changes of luminescence intensity of compound 1 ($\lambda_{em} = 398$ nm) vs concentration of Fe³⁺ solution (upto 14.59 μ M) indicating the detection limit, which calculated using the equation, LOD = $3\sigma/m$, where σ = standard deviation of blank determination and m = slope of the linear curve.

Fig. S30: The plot of the changes of luminescence intensity of compound 1 ($\lambda_{em} = 398$ nm) vs concentration of Cr³⁺ solution (upto 14.59 μ M) indicating the detection limit, which calculated using the equation, LOD = $3\sigma/m$, where σ = standard deviation of blank determination and m = slope of the linear curve.

Fig. S31: The plot of the changes of luminescence intensity of compound 1 ($\lambda_{em} = 398$ nm) vs concentration of Al³⁺ solution (upto 14.59 μ M) indicating the detection limit, which calculated using the equation, LOD = $3\sigma/m$, where σ = standard deviation of blank determination and m = slope of the linear curve.

Fig. S32: Emission spectra of 1 dispersed in water upon incremental addition of Fe³⁺solution in the presence of 2.43 μ M concentration of various metal ions ($\lambda_{ex} = 300$ nm).

Fig. S33: Bar diagram presenting the luminescence intensity (observed at 398 nm) after the consecutive addition of the analytes. The composition and concentration of the system were as follows: (a) 1 in aqueous dispersion, (b) a + 2.43 μ M Cd²⁺, (c) b + 2.43 μ M Cu²⁺, (d) c + 2.43 μ M Mg²⁺, (e) d + 2.43 μ M Ca²⁺, (f) e + 2.43 μ M Co²⁺, (g) f + 2.43 μ M K⁺, (h) g + 2.43 μ M Mn²⁺, (i) h + 2.43 μ M Pb²⁺, (j) i + 2.43 μ M Zn²⁺, (k) j + 2.43 μ M Na⁺, (l) k + 2.43 μ M Fe³⁺, (m) 1 + 2.43 μ M Fe³⁺, (n) m + 2.43 μ M Fe³⁺, (o) n + 2.43 μ M Fe³⁺, (p) o + 2.43 μ M Fe³⁺, (q) p + 2.43 μ M Fe³⁺, (r) q + 4.87 μ M Fe³⁺, (s) r + 4.87 μ M Fe³⁺, (t) s + 4.87 μ M Fe³⁺, (u) q + 4.87 μ M Fe³⁺, (w) s + 7.31 μ M Fe³⁺, and (x) s + 7.31 μ M Fe³⁺.

Fig. S34: Emission spectra of 1 dispersed in water upon incremental addition of Cr^{3+} solution in the presence of 2.43 µM concentration of various metal ions ($\lambda_{ex} = 300$ nm).

Fig. S35: Bar diagram presenting the luminescence intensity (observed at 398 nm) after the consecutive addition of the analytes. The composition and concentration of the system were as follows: (a) 1 in aqueous dispersion, (b) a + 2.43 μ M Cd²⁺, (c) b + 2.43 μ M Cu²⁺, (d) c + 2.43 μ M Mg²⁺, (e) d + 2.43 μ M Ca²⁺, (f) e + 2.43 μ M Co²⁺, (g) f + 2.43 μ M K⁺, (h) g + 2.43 μ M Mn²⁺, (i) h + 2.43 μ M Ca²⁺, (j) i + 2.43 μ M Zn²⁺, (k) j + 2.43 μ M Na⁺, (l) k + 2.43 μ M Cr³⁺, (m) 1 + 2.43 μ M Cr³⁺, (n) m + 2.43 μ M Cr³⁺, (o) n + 2.43 μ M Cr³⁺, (p) o + 2.43 μ M Cr³⁺, (q) p + 2.43 μ M Cr³⁺, (r) q + 4.87 μ M Cr³⁺, (s) r + 4.87 μ M Cr³⁺, (t) s + 4.87 μ M Cr³⁺, (u) q + 4.87 μ M Cr³⁺, (w) s + 7.31 μ M Cr³⁺, and (x) s + 7.31 μ M Cr³⁺.

Fig. 36: Stern-Volmer plots of various metal ions in higher concentration range (upto 48.30 μ M) for compound 1.

Fig. S37: Luminescence lifetime decay profile of compound 1 before and after the addition of the Fe³⁺ ions. The final concentration of Fe³⁺ ions in the medium is indicated in the legend. The instrument response function (prompt) is also shown. Here, $\lambda_{ex} = 300$ nm and $\lambda_{em} = 398$ nm were set during the experiment.

Fig. S38: Luminescence lifetime decay profile of compound 1 before and after the addition of the Cr^{3+} ions. The final concentration of Cr^{3+} ions in the medium is indicated in the legend. The instrument response function (prompt) is also shown. Here, $\lambda_{ex} = 300$ nm and $\lambda_{em} = 398$ nm were set during the experiment.

Fig. S39: Luminescence lifetime decay profile of compound 1 before and after the addition of the Al³⁺ ions. The final concentration of Al³⁺ ions in the medium is indicated in the legend. The instrument response function (prompt) is also shown. Here, $\lambda_{ex} = 300$ nm and $\lambda_{em} = 398$ nm were set during the experiment.

Table S5: Details about the time-resolved luminescence decays of compound 1 ($\lambda_{ex} = 300$ nm and $\lambda_{em} = 398$ nm) in presence of Fe³⁺, Cr³⁺, Al³⁺ solution.

Metal ions	Concentration	Lifetime (ns)			
	(µM)	T ₁	T ₂	T _{av} =	τ(ns)
				$(T_1+T_2)/2$	
Fe ³⁺	0	0.2030	0	0.101	0.203
	48.30	0.1479	1.2854	0.716	0.344
Cr ³⁺	0	0.2321	0	0.116	0.232
	48.30	0.1590	1.3480	0.753	0.490
Al ³⁺	0	0.2415	0	0.120	0.241
	48.30	0.1322	1.0551	0.593	0.301

Fig. S40: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Fe^{3+} ions. Final concentration of Fe^{3+} ions in the medium is indicated in the legend.

Fig. S41: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of Cr^{3+} ions. Final concentration of Cr^{3+} ions in the medium is indicated in the legend.

Fig. S42: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of Al^{3+} ions. Final concentration of Al^{3+} ions in the medium is indicated in the legend.

Fig. S43: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of Cd^{2+} ions. Final concentration of Cd^{2+} ions in the medium is indicated in the legend.

Fig. S44: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Cu^{2+} ions. Final concentration of Cu^{2+} ions in the medium is indicated in the legend.

Fig. S45: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of Mg^{2+} ions. Final concentration of Mg^{2+} ions in the medium is indicated in the legend.

Fig. S46: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Ca^{2+} ions. Final concentration of Ca^{2+} ions in the medium is indicated in the legend.

Fig. S47: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Co^{2+} ions. Final concentration of Co^{2+} ions in the medium is indicated in the legend.

Fig. S48: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of K^+ ions. Final concentration of K^+ ions in the medium is indicated in the legend.

Fig. S49: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Mn^{2+} ions. Final concentration of Mn^{2+} ions in the medium is indicated in the legend.

Fig. S50: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Pb^{2+} ions. Final concentration of Pb^{2+} ions in the medium is indicated in the legend.

Fig. S51: Absorption spectra of 1 dispersed in water upon incremental addition of water solution of Zn^{2+} ions. Final concentration of Zn^{2+} ions in the medium is indicated in the legend.

Fig. S52: Absorption spectra of **1** dispersed in water upon incremental addition of water solution of Na⁺ ions. Final concentration of Na⁺ ions in the medium is indicated in the legend.

MOF	Medium	LOD (µM)	$K_{sv}(M^{-1})$	Ref.
$\{ [Cd_2(SA)_2(L)_2] \cdot H_2O \}_n$	DMF	2.4	2.1 × 10 ⁴	89
[Cd ₂ (OBA) ₂ (BPTP)(H ₂ O)]	DMF	0.36		90
[Zn(5-AIP)(Ald-4)]·H ₂ O	H ₂ O	0.30	9.00 × 10 ⁴	91.
$[Zn(L)(bpdc)] \cdot 1.6H_2O$	DMF	5.62	1.73×10^4	92
[Cd(H ₂ BDDA)] _n	H ₂ O		8.79 × 10 ⁴	93
[Cd(PAM)(4-bpdb) _{1.5}]·DMF	H ₂ O	0.3	3.5 × 10 ⁴	94
$[Cu(tpp) \cdot H_2O]_{2n}$	H ₂ O	10	4.6×10^4	95
${[Cd_3(L^{2-})_3(H_2O)] \cdot (DMF) \cdot (H_2O)}_n$	DMF		2.07×10^4	96
$[Zn_2(oba)_2(bpy)]$	МеОН	0.3	5.8× 10 ⁴	97
Ag-MOFs(1-3)	H ₂ O	11.46,	(0.936,	98
		15.83,	1.033, and	
		15.44	$(0.888) \times 10^4$	
JXUST-18	EtOH	0.196		99
[Cd(PDA)(L) ₂]	H ₂ O	1.34	23.29×10 ⁴	This work

Table S6: A summary of luminescence-based sensing of Fe^{3+} ion using MOFs.

MOF	Medium	LOD	K _{sv} (M ⁻¹)	Ref.
		(µM)		
$[Zn (tbda)]_n$	H ₂ O	180	2.68×10^{3}	100
[Eu ₂ (tpbpc) ₄ ·CO ₃ ·4H ₂ O]·DMF·solvent	H ₂ O	68.8	5.14×10^{2}	101
${[Zn(H_2dhbdc)(bpycz)] \cdot 0.5H_2O}_n$	H ₂ O	8.22	4.85×10^{3}	102
[Zn(Br-1,4-bdc) (bpycz)] _n	H ₂ O	4.73	4.04×10^{3}	102
${[Zn(tta)_{0.5}(m-bimb)] \cdot H_2O}_n$	DMF		0.65	103
[Zn ₂ (TPOM)(NH ₂ –BDC) ₂]·4H ₂ O	DMF	4.9		52
$[Zn(L)(H_2O)] \cdot H_2O$	H ₂ O	2.44	2.03 × 10 ⁴	104
[Zn(5-AIP)(Ald-4)]·H2O	H ₂ O	0.46	2.30×10^4	91
${[Zn(BIBT)(oba)] \cdot DMA}_{n}$	EtOH	0.049		105
$[Me_2NH_2]_4[Zn_6(qptc)_3(trz)_4] \cdot 6H_2O$	H ₂ O	1	4.39×10^4	106
Zn ₃ (bpdc) ₂ (pdc)(DMF)·6DMF	DMF	25.1	3870	107
$[Cd(PDA)(L)_2]$	H ₂ O	4.95	5.06×10 ⁴	This work

Table S7: A summary of luminescence-based sensing of Cr^{3+} ions using MOFs.

MOF	Medium	LOD (µM)	Ksv (M ⁻¹)	Ref.
{[Zn ₂ (O-BTC)(4,4'-	EtOH	3.70		59
$BPY)_{0.5}(H_2O)_3] \cdot (H_2O)_{1.5} \cdot (DMA)_{0.5}\}_n$				
[Zn(DMA)(TBA)]	H ₂ O	1.97	1.33 × 10 ⁴	108
[Co ₂ (dmimpym)(nda) ₂] _n	DMF	0.7		109
$\{ [Cd(CDC)(L)] \}_n$	DMF	61	2.6×10^{3}	89
$[Cd(L)(phen)_2] \cdot 5H_2O$	DMF	0.113	2.49×10^{4}	110
HPU-24@Ru	H ₂ O	11.63		111
$\{[Co(L)(bibp)]\}_n$	H ₂ O	1.52	1.97× 10 ⁴	112
$[Zn(5-AIP)(Ald-4)] \cdot H_2O$	H ₂ O	0.35	2.80×10^{4}	91
[Cd(PAM)(4-bpdb) _{1.5}]·DMF	H ₂ O	0.56	2.3 × 10 ⁴	113
$\{ [Cd_2(SA)_2(L)_2] \cdot H_2O \}_n$	DMF	93	5.4×10^{3}	89
[Co(OBA)(DATZ) _{0.5} (H ₂ O)]	H ₂ O	2.5		114
$[Cd(PDA)(L)_2]$	H ₂ O	3.96	3.09×10 ⁴	This work

Table S8: A summary of luminescence-based sensing of Al^{3+} ions using MOFs.

Fig. S53: CO₂ gas sorption isotherm of 1 at 195 K.

Fig. S54: N_2 gas sorption isotherm of 1 at 77 K.

Fig. S55: H_2 gas sorption isotherm of 1 at 77 K.

Table S9: A summary of CO ₂	gas adsorption using MOFs.
--	----------------------------

MOFs	Surface area	CO ₂ uptake	Ref.
	from N ₂	cm ³ /g at 195	
	adsorption [m ²	Κ	
	g ⁻¹]		
${[Cd_2(sdb)_2(4-bpmh)_2(H_2O)]}_n \cdot 2n(H_2O)$		39.19	115
$\{[Cd_2(sdb)_2(3-$		60.9	115
$bpmh)_2]_n \cdot 3n(H_2O) \cdot n(C_6H_5NO)$			
[Mg ₁₆ (PTCA) ₈ (µ ₂ -	438.1	160.5	116
$H_2O_8(H_2O)_{16}(dioxane)_8].(H_2O)_{13}.(DMF)_{26}$			
${[Zn(H_2dhbdc)(bpycz)] \cdot 0.5H_2O}_n$	291.4	101.1	102
$[Zn(Br-1,4-bdc)(bpycz)]_n$	288.5	98.6	102
Cu-MOF	945	201.6	117
$[Cu_3(3,3'-dmglut)_3(bte)] \cdot 6(H_2O)\}_n$ and		21 and 26.2	118
$[Cu(3,3'-dmglut)(btp)_{0.5}]\cdot 2(H_2O)\}_n$			
Cu–MOP	270.9	96.5	119
ZnDatzBdc	303	92.5	120
$[Cd(PDA)(L)_2]$	11.635	64.5	This work