Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Unusual Tellurium(IV) mediated cyclisation of diols into dihydroxazoles with potential anticancer activity

Kenneth D'Arcy, Tim Schäfer, Michele De Franco, Raffaele Ricco',* Valentina Gandin, Pablo J. Sanz Miguel, Diego Montagner*

Content

Figure S1: ¹H, ¹³C, and ¹²⁵Te NMR spectra of compound 1

Figure S2: FTIR and ESI-MS of compound 1

- Figure S3: ¹H, ¹³C, and ¹²⁵Te NMR spectra of compound 2
- Figure S4: FTIR and ESI-MS of compound 2

Figure S5: ¹H and ¹³C NMR spectra of compound 3

Figure S6: 125Te and 19F NMR spectra of compound 3

Figure S7: FTIR and ESI-MS of compound 3

Figure S8: ¹H and ¹³C NMR spectra from the decomposition of compound **1** after 3 days in water at room temperature

Figure S9: ¹H and ¹³C NMR spectra from the decomposition of compound **2** after 3 days in water at room temperature

Figure S10: ¹H and ¹³C NMR spectra from the decomposition of compound **3** after 3 days in water at room temperature

Figure S11: ESI-MS spectra of compounds 2 and 3 after decomposition

Figure S12: ESI-MS decomposition pattern of compounds 1-3

Tables S1-S2: Selected distances and angles in the crystal structures of 1-3

Figure S1. NMR Spectra of A) ¹H, B) ¹³C, and C) ¹²⁵Te NMR of compound 1 in DMSO- d_6

Figure S2. A) FTIR spectrum of compound **1**. Assignments (cm⁻¹): 2980 -> str. C-H (CH3); 1661 -> str. C=N (ring); 1441 -> oxazole ring vibr.; 1380 -> sym. bend. CH₃-C-CH₃; 1165 -> str. C-CH₃; 1116 -> str. -C-O-; 1023 -> sym str. =C-O-; 996 -> C-H oop vibr. (CH₃); 791 -> rocking CH₃-C-CH3; 670 -> wagging CH₃-C-C-CH₃; 590 -> C-C skeleton vib.; 506 -> C-C skeleton vib. B) ESI-MS (+) Mass spectrum of compound **1** (base peak: m/z 142)

Figure S3. NMR Spectra of A) ¹H, B) ¹³C, and C) ¹²⁵Te NMR of compound **2** in DMSO- d_6

Figure S4. A) FTIR spectrum of compound **2**. Assignments (cm⁻¹): 2981 -> str. C-H (CH₃); 1629 -> str. C=N (ring); 1468 -> oxazole ring vibr.; 1379 -> sym. bend. CH₃-C-CH₃; 1262 -> Ph-C(=N)(-O) vib.; 1163 -> str. C-CH₃; 1141 -> str. -C-O-; 1093 -> ip vibration C-H from benzene; 1027 -> sym str. =C-O-; 930 -> C-H oop vibr. (CH₃); 780 -> rocking CH₃-C-CH₃; 705 -> oop vibration benzene ring; 682 -> wagging CH₃-C-C-CH₃; 589 -> C-C skeleton vib.; 540 -> ip vibration benzene ring; 517 -> C-C skeleton vib.; B) ESI-MS (+) Mass spectrum of compound **2** (base peak: m/z 204)

Figure S5. NMR Spectra of A) ¹H, and B) ¹³C NMR of compound **3** in DMSO- d_6

Figure S6. NMR Spectra of A) 125 Te, and B) 19 F NMR of compound **3** in DMSO- d_6

Figure S7. A) FTIR spectrum of compound **3**. Assignments (cm⁻¹): 2985 -> str. C-H (CH₃); 1644 -> str. C=N (ring); 1452 -> oxazole ring vibr.; 1405 -> sym. bend. CH₃-C-CH₃; 1282 -> CF₃Ph-C(=N)(-O) vib.; 1167 -> str. C-CH3; 1122 -> str. -C-O-; 1096 -> ip vibration C-H from benzene; 1014 -> sym str. =C-O-; 969 -> C-H oop vibr. (CH₃); 853 -> oop vibration benzene ring (H-C-C-H in 1,4-disubstituted benzenes); 795 -> rocking CH₃-C-CH₃; 772 -> C-F; 757 -> -CF₃; 698 -> oop vibration benzene ring; 662 -> wagging CH₃-C-C-CH₃; 591 -> C-C skeleton vib.; 539 -> ip vibration benzene ring; 517 -> C-C skeleton vib.; B) ESI-MS (+) Mass spectrum of compound **3** (base peak: m/z 272)

Figure S8. Decomposition experiment for compound **1** followed via ¹H NMR (A) and ¹³C NMR (B) spectra in DMSO- d_6 . For each analysis, the top spectra represent the initial situation, the bottom spectra are related to the compound after three days in water at room temperature. The peaks highlighted with * indicate the decomposed product.

Figure S9. Decomposition experiment for compound **2** followed via ¹H NMR (A) and ¹³C NMR (B) spectra in DMSO- d_6 . For each analysis, the top spectra represent the initial situation, the bottom spectra are related to the compound after three days in water at room temperature. The peaks highlighted with * indicate the decomposed product.

Figure S10. Decomposition experiment for compound **3** followed via ¹H NMR (A) and ¹³C NMR (B) spectra in DMSO- d_6 . For each analysis, the top spectra represent the initial situation, the bottom spectra are related to the compound after three days in water at room temperature. The peaks highlighted with * indicate the decomposed product.

Figure S11. ESI-MS spectrum (+) of A) compound 2, and B) compound 3 after decomposition.

Figure S12. Proposed fragmentation pattern for compounds **1-3** with the mass peaks assigned in the ESI-MS spectra reported in Figures **S2**, **S4** and **S7** (Ref.: S. Osman, C.J. Dooley, T.A. Foglia, and L.M. Gregory, *Org. Mass. Spectrom.* **1970**, *4*, 139-145).

	1	2	3
Te1–Cl1	2.5431(4)	2.4557(4)	2.5271(3)
Te1–Cl2	2.5380(4)	2.5341(4)	2.5464(3)
Te1–Cl3	2.5494(4)	2.6432(4)	2.5385(3)
01–C2	1.5111(17)	1.5063(15)	1.5035(13)
O1–C5	1.3191(17)	1.3138(16)	1.3120(14)
C2–C3	1.5577(19)	1.5548(18)	1.5609(16)
C2–C6	1.512(2)	1.5125(19)	1.5098(17
C2–C7	1.519(2)	1.5184(18)	1.5146(17)
C3–N4	1.4817(17)	1.4938(16)	1.4841(14)
C3–C8	1.531(2)	1.5287(18)	1.5294(16)
C3–C9	1.520(2)	1.5189(17)	1.5248(16)
N4–C5	1.2887(19)	1.2953(17)	1.2946(15)
C5–C10	1.477(2)	1.4636(18)	1.4596(15)
C10–C11		1.4001(18)	1.3967(16)
C10–C15		1.3920(19)	1.3998(16)
C11–C12		1.3853(19)	1.3886(17)
C12–C13		1.3931(19)	1.3883(19)
C13–C14		1.3884(19)	1.3897(18)
C14–C15		1.3915(19)	1.3896(16)
C13–C16		1.5013(18)	
C16–F17		1.3304(16)	
C16–F18		1.3382(16)	
C16–F19		1.3380(16)	

 Table S1. Selected distances [Å] of compounds 1, 2 and 3.

	1	2	3
C5–O1–C2	107.36(10)	107.31(10)	107.67(9)
01–C2–C3	101.41(10)	101.38(9)	101.46(9)
O1–C2–C6	107.73(11)	107.46(10)	106.98(10)
01–C2–C7	104.63(11)	104.96(10)	104.98(9)
C6–C2–C3	115.25(12)	115.86(11)	116.09(10)
C6–C2–C7	111.61(12)	111.80(11)	111.91(11)
C7–C2–C3	114.82(12)	113.98(11)	113.94(10)
N4-C3-C2	99.64(11)	98.66(9)	99.61(9)
C9–C3–C2	114.01(12)	113.89(11)	114.25(10)
C8–C3–C2	114.06(12)	114.14(11)	113.42(10)
N4-C3-C9	110.06(12)	111.41(10)	111.06(10)
N4-C3-C8	107.37(11)	106.59(10)	107.37(10)
C9–C3–C8	110.89(12)	111.25(11)	110.47(10)
C5-N4-C3	111.31(12)	110.72(11)	110.79(10)
N4-C5-01	114.03(13)	113.77(12)	114.25(10)
N4-C5-C10	127.05(13)	127.71(12)	127.07(10)
O1–C5–C10	118.92(13)	118.52(11)	118.66(10)
C15-C10-C11		121.03(12)	120.79(11)
C15-C10-C5		120.57(12)	120.11(10)
C11-C10-C5		118.40(12)	119.09(10)
C12-C11-C10		119.61(12)	119.21(11)
C11-C12-C13		119.15(12)	120.16(11)
C14–C13–C12		121.44(12)	120.61(11)
C13–C14–C15		119.58(13)	119.98(11)
C14-C15-C10		119.18(12)	119.24(11)
C14-C13-C16		120.22(12)	
C12-C13-C16		118.33(12)	

Table S2. Selected angles [°] of compounds 1, 2 and 3.