Electronic Supplementary Information

Development of phenazine-2,3-diol-based photosensitizers: effect of substitution of cyano group for nitro group on singlet oxygen generation

Kazuki Ohira, Chih-Hsin Yu, Keiichi Imato and Yousuke Ooyama*

Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan. E-mail: yooyama@hiroshima-u.ac.jp

1. Synthesis

S1 was synthesized by the method in our previous work.¹

S2 was synthesized by the method in our previous work.²

Reference

- 1. K. Imato, K. Ohira, M. Yamaguchi, T. Enoki and Y. Ooyama, Mater. Chem. Front., 2020, 4, 589-596.
- 2. K. Ohira, K. Imato and Y. Ooyama, Mater. Chem. Front., 2021, 5, 5298-5304.

2. NMR Spectra

Fig. S1 ¹H NMR spectrum of compound 1 in DMSO- d_6 .

Fig. S2 ¹H NMR spectrum of compound 2 in chloroform- d_1 .

Fig. S3 ¹H NMR spectrum of compound 3 in Acetone- d_6 .

Fig. S4 ¹³C NMR spectrum of compound 3 in Acetone- d_6 .

Fig. S5 ¹H NMR spectrum of compound 4 in Acetone- d_6 .

Fig. S6 ¹³C NMR spectrum of compound 4 in Acetone- d_6 .

Fig. S7 ¹H NMR spectrum of YC-1 in DMSO- d_6 .

Fig. S8 ¹H NMR spectrum of YC-2 in DMSO-*d*₆.

3. Theoretical calculation

Table S1 The cartesian coordinates of S_0 state geometry of **KI-3** optimized by DFT at the B3LYP/6-31G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Z	 Tag	Symbol	Х	Y	Z
1	С	0.129279	4.480833	-0.17629	 23	С	5.683693	-0.50717	-0.18344
2	С	1.00039	3.426133	-0.24896	24	Н	6.222294	-1.85333	-1.79949
3	С	0.523033	2.086954	-0.14077	25	С	-2.44581	-2.05075	0.378662
4	С	-0.8813	1.851643	0.042748	26	С	-2.9908	-2.93379	1.30129
5	С	-1.77148	2.955123	0.116823	27	S	-3.6894	-1.35622	-0.62955
6	С	-1.25572	4.222542	0.007386	28	С	-4.39608	-3.05502	1.196384
7	С	-0.51524	-0.41524	0.072715	29	Н	-2.39895	-3.43773	2.057335
8	С	0.90848	-0.17849	-0.10604	30	С	-4.92595	-2.2713	0.191837
9	С	1.819375	-1.29201	-0.18155	31	Н	-5.00203	-3.68366	1.838975
10	С	1.304481	-2.57256	-0.0639	32	0	-0.44654	-4.11233	0.149021
11	С	-0.11251	-2.80908	0.099313	33	Н	-1.41544	-4.19293	0.177018
12	С	-1.01575	-1.76425	0.184146	34	0	2.04717	-3.69382	-0.08076
13	Н	0.467826	5.505281	-0.25473	35	Н	2.98899	-3.45267	-0.11704
14	Н	2.064464	3.581397	-0.38806	36	С	6.966984	0.073277	0.182057
15	Н	-2.83105	2.785091	0.255635	37	0	7.1249	0.916024	1.054704
16	Ν	-1.37184	0.600177	0.147184	38	Н	7.822833	-0.31704	-0.40442
17	Ν	1.390189	1.059852	-0.2124	39	С	-6.3274	-2.14521	-0.17903
18	С	3.266503	-1.10438	-0.37266	40	0	-6.74704	-1.42071	-1.07097
19	С	4.073298	-1.78289	-1.27626	41	Н	-7.01261	-2.77566	0.422478
20	S	4.212494	-0.02416	0.619144	42	Ν	-2.17525	5.364787	0.083375
21	С	5.441831	-1.44116	-1.16989	43	0	-1.69468	6.495729	-0.01609
22	Н	3.681133	-2.46672	-2.02104	44	0	-3.37563	5.137745	0.242264

Table S2 The cartesian coordinates of S_0 state geometry of **KI-5** optimized by DFT at the B3LYP/6-31G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Ζ	 Tag	Symbol	Х	Y	Z
1	С	-0.44508	4.473513	-0.15934	 24	С	-2.16403	-2.35075	0.283723
2	С	0.555055	3.53997	-0.22643	25	С	-2.64456	-3.25768	1.204988
3	С	0.255775	2.148644	-0.12921	26	S	-3.44824	-1.89288	-0.8233
4	С	-1.10876	1.732538	0.035403	27	С	-4.02285	-3.57868	1.028994
5	С	-2.13395	2.711869	0.104818	28	Н	-2.03806	-3.65032	2.014715
6	С	-1.78715	4.037197	0.00741	29	Н	-4.56657	-4.26174	1.672155
7	С	-0.45496	-0.46879	0.055373	30	0	0.079256	-4.12314	0.109977
8	С	0.932488	-0.04732	-0.09459	31	Н	-0.87812	-4.30191	0.141977
9	С	1.980137	-1.03078	-0.14623	32	0	2.522569	-3.37576	-0.06395
10	С	1.630089	-2.36779	-0.05253	33	Н	3.416015	-2.98854	-0.10818
11	С	0.254491	-2.78705	0.071587	34	С	6.98569	0.905096	0.527886
12	С	-0.77998	-1.87069	0.138821	35	Н	7.238872	0.624877	1.556121
13	Н	-0.24059	5.533482	-0.22937	36	Н	6.862553	1.993226	0.505932
14	Н	1.591831	3.832089	-0.35194	37	Н	7.834424	0.64794	-0.11092
15	Н	-3.16404	2.40487	0.230095	38	С	5.756555	0.196314	0.043271
16	Ν	-1.43739	0.42764	0.123936	39	С	-6.0274	-3.0153	-0.50018
17	Ν	1.251572	1.245384	-0.19076	40	Н	-6.09348	-3.37704	-1.53199
18	С	3.400212	-0.66529	-0.28485	41	Н	-6.52618	-2.04087	-0.46225
19	С	4.304353	-1.14786	-1.20699	42	Н	-6.58602	-3.70611	0.136427
20	S	4.214268	0.413801	0.836522	43	С	-4.6069	-2.93153	-0.02795
21	С	5.63052	-0.65605	-1.02174	44	Ν	-2.84715	5.048124	0.076699
22	Н	4.01814	-1.80464	-2.02212	45	0	-2.51821	6.233602	-0.01281
23	Н	6.463271	-0.92023	-1.66411	46	0	-4.01066	4.66713	0.220452

Table S3 The cartesian coordinates of S_0 state geometry of **YC-1** optimized by DFT at the B3LYP/6-31G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Ζ		Tag	Symbol	Х	Y	Z
1	С	-0.26764	-2.54315	0.075156		24	С	-2.59093	-1.74546	0.291243
2	С	-1.15001	-1.47957	0.14623		25	С	-3.20314	-2.56376	1.216981
3	С	-0.6163	-0.14339	0.065472		26	S	-3.79007	-1.11213	-0.82532
4	С	0.817933	0.06147	-0.08649		27	С	-4.61349	-2.67873	1.037821
5	С	1.704009	-1.07108	-0.14319		28	Н	-2.66289	-3.03696	2.030596
6	С	1.155147	-2.33922	-0.05218		29	С	-5.09234	-1.96116	-0.02638
7	С	0.48268	2.335107	-0.11712		30	Н	-5.25398	-3.26895	1.683837
8	С	-0.9284	2.132397	0.04943		31	0	1.88355	-3.47283	-0.06942
9	С	-1.79193	3.257504	0.120127		32	Н	2.825318	-3.22593	-0.11326
10	Н	-2.85527	3.089095	0.247205		33	0	-0.64644	-3.83678	0.111875
11	С	0.14252	4.737187	-0.14648		34	Н	-1.61978	-3.86549	0.148548
12	С	0.989996	3.664019	-0.21476		35	С	6.947233	0.088018	0.511586
13	Н	0.522862	5.749812	-0.21906		36	Н	6.991436	1.18198	0.478921
14	Н	2.059124	3.795015	-0.34217		37	Н	7.15667	-0.21741	1.542464
15	Ν	1.329605	1.290613	-0.18099		38	Н	7.745827	-0.30155	-0.1249
16	Ν	-1.45119	0.892734	0.137875		39	С	-6.50816	-1.83798	-0.5041
17	С	3.162671	-0.92533	-0.28588		40	Н	-6.86043	-0.80144	-0.46829
18	С	3.981231	-1.54412	-1.20667		41	Н	-6.62211	-2.18704	-1.53609
19	S	4.133924	0.023431	0.82833		42	Н	-7.16384	-2.43983	0.130301
20	С	5.367131	-1.25846	-1.02612		43	С	-1.26577	4.532153	0.023415
21	Н	3.596698	-2.15348	-2.01816		44	С	-2.1349	5.669934	0.091732
22	С	5.62361	-0.4297	0.034055		45	Ν	-2.83181	6.600554	0.145593
23	Н	6.148635	-1.64912	-1.66842	_					

Table S4 The cartesian coordinates of S_0 state geometry of **YC-1P** optimized by DFT at the B3LYP/6-31+G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Ζ	 Tag	Symbol	Х	Y	Z
1	С	-0.28193	-2.67113	0.002546	 23	С	5.644714	-0.24138	-0.00359
2	С	-1.19311	-1.63417	0.00649	24	Н	6.391857	-2.27126	-0.00932
3	С	-0.59902	-0.30896	0.004719	25	С	-2.64473	-1.8618	0.011031
4	С	0.86745	-0.12118	0.001954	26	С	-3.30905	-3.07852	0.03845
5	С	1.773117	-1.22659	-0.00062	27	S	-3.84796	-0.55753	-0.02589
6	С	1.194518	-2.52231	-0.00168	28	С	-4.72979	-2.97407	0.028642
7	С	0.532879	2.179496	0.002671	29	Н	-2.7876	-4.02295	0.064697
8	С	-0.88483	1.990278	0.004093	30	С	-5.18686	-1.68234	-0.00752
9	С	-1.74567	3.110349	0.004871	31	Н	-5.38947	-3.83636	0.047906
10	Н	-2.81822	2.94842	0.006154	32	С	-2.07862	5.530813	0.005103
11	С	-1.21005	4.393981	0.004314	33	Ν	-2.77773	6.464354	0.005731
12	С	0.206697	4.590058	0.003013	34	С	-6.60716	-1.19625	-0.02644
13	С	1.0528	3.507337	0.002232	35	Н	-7.29071	-2.05037	-0.00746
14	Н	0.60229	5.600163	0.002675	36	Н	-6.83523	-0.56313	0.839284
15	Н	2.129898	3.639281	0.001213	37	Н	-6.82735	-0.60872	-0.9257
16	Ν	1.366934	1.122309	0.001583	38	С	6.893147	0.592838	-0.00294
17	Ν	-1.40721	0.736852	0.00535	39	Н	7.773116	-0.05783	-0.00577
18	С	3.229401	-1.06883	-0.0028	40	Н	6.954364	1.243387	-0.88398
19	С	4.185011	-2.0743	-0.00634	41	Н	6.956558	1.238654	0.881434
20	S	4.059364	0.503734	-0.00027	42	0	-0.62878	-3.96948	0.001203
21	С	5.532035	-1.60731	-0.00675	43	Н	0.273641	-4.40565	-0.00343
22	Н	3.902633	-3.11647	-0.00838	44	0	1.811527	-3.64265	-0.00597

Table S5 The cartesian coordinates of S_0 state geometry of **YC-2** optimized by DFT at the B3LYP/6-31G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	0.412513	-2.5576	-0.11163	23	Н	-5.98232	-2.15677	1.75151
2	С	1.230463	-1.44414	-0.19242	24	С	2.679554	-1.6156	-0.3797
3	С	0.623407	-0.13962	-0.08357	25	С	3.298716	-2.45937	-1.29253
4	С	-0.81411	-0.01748	0.09193	26	S	3.858808	-0.81476	0.627398
5	С	-1.63496	-1.20062	0.168472	27	С	4.70859	-2.46672	-1.18055
6	С	-1.01894	-2.43551	0.045834	28	Н	2.753348	-3.01515	-2.04729
7	С	-0.60957	2.272156	0.120541	29	С	5.168992	-1.63483	-0.18043
8	С	0.808988	2.150146	-0.05814	30	Н	5.36598	-3.04985	-1.81558
9	С	1.608097	3.32166	-0.13247	31	0	-1.66884	-3.61422	0.053038
10	Н	2.67822	3.214569	-0.26799	32	Н	-2.6273	-3.45004	0.073582
11	С	-0.40685	4.687464	0.149841	33	0	0.850133	-3.83036	-0.15994
12	С	-1.19252	3.568594	0.223088	34	Н	1.822487	-3.83288	-0.181
13	Н	-0.84317	5.676875	0.226353	35	С	1.009643	4.563136	-0.02997
14	Н	-2.26616	3.638778	0.358621	36	С	1.810705	5.749929	-0.10354
15	Ν	-1.39212	1.179051	0.192928	37	Ν	2.451168	6.719708	-0.16207
16	Ν	1.396801	0.941202	-0.15815	38	С	-6.87106	-0.2113	-0.15079
17	С	-3.09149	-1.12873	0.363359	39	Н	-7.69492	-0.69036	0.415409
18	С	-3.84555	-1.90256	1.23689	40	С	6.553775	-1.3931	0.194677
19	S	-4.11783	-0.08048	-0.58232	41	Н	7.290163	-1.97243	-0.39766
20	С	-5.23561	-1.66142	1.141206	42	0	-7.09246	0.654373	-0.9867
21	Н	-3.40379	-2.58393	1.955694	43	0	6.910174	-0.62861	1.080904
22	С	-5 54796	-0 70853	0 193203					

Table S6 The cartesian coordinates of S_0 state geometry of **YC-2P** optimized by DFT at the B3LYP/6-31+G(d,p)/THF-IEFPCM level.

Tag	Symbol	Х	Y	Ζ	 Tag	Symbol	Х	Y	Ζ
1	С	-0.40748	-2.7079	-0.00533	 22	Н	3.733504	-3.3492	-0.00958
2	С	-1.26442	-1.62397	-0.00119	23	С	5.587971	-0.55038	0.003904
3	С	-0.61066	-0.32344	-0.00215	24	Н	6.250873	-2.62526	-0.00138
4	С	0.855018	-0.2022	-0.0037	25	С	-2.72086	-1.77572	0.003592
5	С	1.713047	-1.35498	-0.00537	26	С	-3.43428	-2.97961	0.013727
6	С	1.080216	-2.62723	-0.00785	27	S	-3.83828	-0.4127	-0.00317
7	С	0.628157	2.108963	-0.00281	28	С	-4.83064	-2.81401	0.015384
8	С	-0.79446	1.98434	-0.00207	29	Н	-2.94965	-3.94271	0.020024
9	С	-1.60465	3.142641	-0.00166	30	С	-5.22151	-1.48461	0.006367
10	Н	-2.68347	3.031253	-0.00113	31	Н	-5.53533	-3.63945	0.023065
11	С	-1.00705	4.397112	-0.00191	32	С	-1.82031	5.576108	-0.00153
12	С	0.416415	4.527684	-0.0025	33	Ν	-2.47172	6.54259	-0.00124
13	С	1.212413	3.407204	-0.00293	34	0	1.638805	-3.77086	-0.01147
14	Н	0.858139	5.518262	-0.00263	35	0	-0.81133	-3.982	-0.00737
15	Н	2.294314	3.488022	-0.00344	36	Н	0.065819	-4.46735	-0.01032
16	Ν	1.412098	1.00962	-0.00363	37	С	6.847064	0.143161	0.010639
17	Ν	-1.37179	0.754872	-0.00155	38	Н	7.729817	-0.52793	0.010346
18	С	3.163373	-1.25421	-0.00403	39	С	-6.58345	-1.00593	0.006057
19	С	4.071615	-2.32456	-0.00569	40	Н	-7.34393	-1.81219	0.013108
20	S	4.041627	0.278136	0.002336	41	0	7.005998	1.370334	0.016758
21	С	5.417894	-1.92879	-0.00123	 42	0	-6.93526	0.176534	-0.00117

PS	State	Excitation energy / eV	Oscillator strength	Main transition orbital	Contribution	Transition
КІ-3	S 1	2.49	0.0974	HOMO→LUMO	0.99	ππ*
	S2	2.98	0.0019	HOMO-2→LUMO	0.88	nπ*
	S3	3.08	0.1321	HOMO-1→LUMO	0.71	$\pi\pi^*$
KI-5	S 1	2.23	0.0539	HOMO→LUMO	0.99	$\pi\pi^*$
	S2	2.77	0.0321	HOMO-1→LUMO	0.92	$\pi\pi^*$
	S3	2.94	0.0013	HOMO-3→LUMO	0.72	nπ*
YC-1	S 1	2.42	0.0806	HOMO→LUMO	0.99	ππ*
	S2	2.97	0.036	HOMO-1→LUMO	0.92	ππ*
	S3	3.07	0.0017	HOMO-4→LUMO	0.38	ππ*
				HOMO-3→LUMO	0.45	nπ*
YC-2	S 1	2.62	0.1722	HOMO→LUMO	0.98	ππ*
	S2	3.07	0.0044	HOMO-2→LUMO	0.88	nπ*
	S3	3.23	0.2277	HOMO-1→LUMO	0.72	ππ*
YC-1P	S 1	1.88	0.0696	HOMO→LUMO	0.97	$\pi\pi^*$
	S2	2.72	0.1078	HOMO-1→LUMO	0.82	$\pi\pi^*$
	S3	3.06	0.5963	HOMO→LUMO+1	0.83	$\pi\pi^*$
YC-2P	S 1	2.18	0.2028	HOMO→LUMO	0.94	$\pi\pi^*$
	S2	2.66	0.5482	HOMO→LUMO+1	0.93	$\pi\pi^*$
	S3	2.98	0.5275	HOMO-1→LUMO	0.73	$\pi\pi^*$

Table S7 Excitation energy, oscillator strength, main transition orbital, and their contribution forsinglet states of KI-3, KI-5, YC-1, and YC-2 at B3LYP/6-31G(d,p)/THF-IEFPCM level, and YC-1Pand YC-2P at B3LYP/6-31G+(d,p)/THF-IEFPCM level.

PS	State	Excitation energy / eV	Main transition orbital	Contribution	Transition
KI-3	T_1	1.77	HOMO→LUMO	0.81	ππ*
	T_2	2.34	HOMO-1→LUMO	0.80	$\pi\pi^*$
	T ₃	2.48	HOMO→LUMO+1	0.45	$\pi\pi^*$
	T_4	2.61	HOMO-2→LUMO	0.72	nπ*
KI-5	T_1	1.68	HOMO→LUMO	0.77	$\pi\pi^*$
	T_2	2.29	HOMO-1→LUMO	0.66	$\pi\pi^*$
	T ₃	2.59	HOMO-3→LUMO	0.59	n π *
	T_4	2.64	HOMO-4→LUMO	0.46	$\pi\pi^*$
YC-1	T_1	1.75	HOMO→LUMO	0.83	$\pi\pi^*$
	T_2	2.38	HOMO-1→LUMO	0.71	$\pi\pi^*$
	T_3	2.66	HOMO-3→LUMO	0.44	nπ*
	T_4	2.72	HOMO-4→LUMO	0.36	nπ*
YC-2	T_1	1.80	HOMO→LUMO	0.88	$\pi\pi^*$
	T_2	2.37	HOMO-1→LUMO	0.85	$\pi\pi^*$
	T_3	2.48	HOMO→LUMO+1	0.55	$\pi\pi^*$
	T_4	2.65	HOMO→LUMO+2	0.35	$\pi\pi^*$
	T ₅	2.67	HOMO-2→LUMO	0.74	nπ*
YC-1P	T_1	1.43	HOMO→LUMO	0.93	$\pi\pi^*$
	T_2	1.89	HOMO-1→LUMO	0.87	$\pi\pi^*$
	T ₃	2.36	HOMO→LUMO+1	0.72	$\pi\pi^*$
	T_4	2.78	HOMO→LUMO+2	0.31	$\pi\pi^*$
YC-2P	T_1	1.62	HOMO→LUMO	0.93	$\pi\pi^*$
	T_2	1.91	HOMO-1→LUMO	0.87	$\pi\pi^*$
	T ₃	2.06	HOMO→LUMO+1	0.72	$\pi\pi^*$
	T ₄	2.47	HOMO→LUMO+2	0.31	ππ*

Table S8 Excitation energy, oscillator strength, main transition orbital, and their contribution for tripletstates of KI-3, KI-5, YC-1, and YC-2 at B3LYP/6-31G(d,p)/THF-IEFPCM level, and YC-1P andYC-2P at B3LYP/6-31G+(d,p)/THF-IEFPCM level.

Fig. S9 Molecular orbitals of **KI-3**, **KI-5**, **YC-1**, and **YC-2** at B3LYP/6-31G(d,p)/THF-IEFPCM level, and **YC-1P** and **YC-2P** at B3LYP/6-31G+(d,p)/THF-IEFPCM level.

Fig. S10 Calculated oscillator strength of (a) **KI-3**, (b) **KI-5**, (c) **YC-1**, and (d) **YC-2** derived from TDDFT calculations at B3LYP/6-31G(d,p)/THF-IEFPCM level, and (e) **YC-1P** and (f) **YC-2P** at B3LYP/6-31+G(d,p)/THF-IEFPCM level.

4. Optical properties

Fig. S11 Fluorescence spectra ($\lambda_{ex} = 448 \text{ nm}$) of YC-2 in THF with and without trifluoroacetic acid (TFA) (50 eq.).

Fig. S12 (a) Photoabsorption spectra of **YC-1** in THF with and without triethylamine (TEA), and after addition of trifluoroacetic acid (TFA) to THF solution of **YC-1** containing TEA. (b) Photoabsorption spectra of **YC-2** in THF with and without TFA, and after addition of TEA to THF solution of **YC-1** containing TFA.

Fig. S13 Photoabsorption spectra of (a) YC-1 and (b) YC-2 upon the addition of NaOH in THF.

Fig. S14 Photoabsorption spectra of YC-1 and YC-2 in DMSO.

Fig. S15 Photoabsorption spectra of (a) **YC-1** and (c) **YC-2** upon the addition of trifluoroacetic acid (TFA) in DMSO, and (b) **YC-1** and (d) **YC-2** upon the addition of triethylamine (TEA) in DMSO.

Fig. S16 EPR spectra of air-saturated THF solutions containing 4-oxo-TEMP (50 mM) and (a) YC-1 or (b) YC-2 (5 μ M) before and after exposure to continuous visible light (>510 nm, and 30 mW cm⁻²) for 60 min. The characteristic 1:1:1 triplet signal originates from a stable nitroxide radical (4-oxo-TEMPO) formed by the reaction of 4-oxo-TEMP with ¹O₂.