# Three Novel Indole-Bearing Porous Organic Polymers for Efficient Iodine Capture from Both Vapor and Organic Phases

Jingwen Yu<sup>a,b</sup>, Luna Song<sup>c</sup>, Yeshuang Wang<sup>a</sup>, Haowen Li<sup>d</sup>, Jiawen Liu<sup>a</sup>, Mengmeng Wu<sup>a,\*</sup>, Yu Feng<sup>a</sup>, and Jie Mi<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Clean and Efficient Coal Utilization/Key Laboratory of Coal Science and Technology of Shanxi Province and Ministry of Education, Taiyuan University of Technology, Taiyuan, China 030024, China, E-mail: mijie111@163.com, wumengmeng111@126.com.

<sup>b</sup> Lu'an Chemical Group Co., Ltd., Changzhi 046204, China

<sup>c</sup> Shanxi Institute of Energy, Jinzhong 030600, China

<sup>d</sup> College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China

## **Table of Contents**

| 1. FT-IR details of Ph-TIn                                            | S2      |
|-----------------------------------------------------------------------|---------|
| 2. X-ray diffraction details of Ph-TIn                                |         |
| 3. Preparation, porosity, and iodine adsorption performance of InPOPs | S10-S13 |
| 4. FT-IR details of InPOPs                                            | S14     |
| 5. Comparison of iodine adsorption capacities in vapor phase          | S15-S17 |
| 6. Supporting references                                              | S18-S19 |

# 1. FT-IR details of Ph-TIn

| Wave number (cm <sup>-1</sup> ) | Vibrational mode of characteristic group              |
|---------------------------------|-------------------------------------------------------|
| 3453                            | N-H stretching vibration on indole ring               |
| 3423                            | O-H stretching vibration of water coming from KBr     |
| 2025                            | C-H stretching vibration of aromatic ring             |
| 3035                            | (indole ring and benzene ring)                        |
| 2850                            | C-H stretching vibration of methyne                   |
|                                 | Skeleton stretching vibration of aromatic ring        |
| 1616, 1503, 1455                | (indole ring and benzene ring)                        |
| 1342                            | C-H bending vibration of methyne                      |
| 745 (sturner)                   | C-H bending vibration of four adjacent hydrogen atoms |
| 745 (strong)                    | on the indole ring (benzo)                            |

Table S1. Analysis of characteristic peaks of Ph-TIn.

# 2. X-ray diffraction details of Ph-TIn

| Chemical formula                        | $C_{40}H_{30}N_4$                                             |  |  |
|-----------------------------------------|---------------------------------------------------------------|--|--|
| Formula weight                          | 566.68                                                        |  |  |
| Temperature/K                           | 150.00                                                        |  |  |
| Color, habit                            | Colourless, Block                                             |  |  |
| Crystal size/mm <sup>3</sup>            | $0.12 \times 0.11 \times 0.10$                                |  |  |
| Crystal system                          | triclinic                                                     |  |  |
| Space group                             | P-1                                                           |  |  |
| a/Å                                     | 11.2613(5)                                                    |  |  |
| b/Å                                     | 12.2335(5)                                                    |  |  |
| c/Å                                     | 14.3259(6)                                                    |  |  |
| α/°                                     | 66.0230(10)                                                   |  |  |
| β/°                                     | 78.933(2)                                                     |  |  |
| γ/°                                     | 67.3370(10)                                                   |  |  |
| Volume/Å <sup>3</sup>                   | 1662.60(12)                                                   |  |  |
| Z                                       | 2                                                             |  |  |
| Calculated density g/cm <sup>-3</sup>   | 1.132                                                         |  |  |
| Absorption coefficient/mm <sup>-1</sup> | 0.067                                                         |  |  |
| F(000)                                  | 596.0                                                         |  |  |
| Radiation                               | ΜοΚα (λ = 0.71073)                                            |  |  |
| $2\theta$ range for data collection/°   | 3.984 to 52.812                                               |  |  |
| Index ranges                            | -14≤h≤14, -14≤k≤15, -17≤l≤ 17                                 |  |  |
| Reflections collected                   | 22987                                                         |  |  |
| Independent reflections                 | 6782 [R <sub>int</sub> = 0.0373, R <sub>sigma</sub> = 0.0395] |  |  |
| Data/restraints/parameters              | 6782/0/397                                                    |  |  |
| Goodness-of-fit on F <sup>2</sup>       | 1.042                                                         |  |  |
| Final R indices [I>2σ(I)]               | $R_1 = 0.0413$ , $wR_2 = 0.1089$                              |  |  |
| CCDC number                             | 2189408                                                       |  |  |

 Table S2. Crystal structure parameters of Ph-TIn.

| Atom-Atom | Length     | Atom-Atom | Length     |
|-----------|------------|-----------|------------|
| N1-C11    | 1.3785(14) | C16-C17   | 1.3851(17) |
| N1-C13    | 1.3717(15) | C18-C19   | 1.3953(15) |
| N2-C7     | 1.3747(16) | C18-C23   | 1.3891(15) |
| N2-C8     | 1.3817(15) | C19-C20   | 1.3836(16) |
| N3-C34    | 1.3770(16) | C20-C21   | 1.3940(16) |
| N3-C35    | 1.3768(16) | C21-C22   | 1.3853(16) |
| N4-C26    | 1.3797(17) | C21-C24   | 1.5235(15) |
| N4-C27    | 1.3732(16) | C22-C23   | 1.3895(16) |
| C1-C2     | 1.4409(15) | C24-C25   | 1.5120(16) |
| C1-C8     | 1.3648(16) | C24-C33   | 1.5129(15) |
| C1-C9     | 1.5123(15) | C25-C26   | 1.3585(17) |
| C2-C3     | 1.4040(16) | C25-C28   | 1.4397(15) |
| C2-C7     | 1.4160(16) | C27-C28   | 1.4116(17) |
| C3-C4     | 1.3847(17) | C27-C32   | 1.3947(17) |
| C4-C5     | 1.4047(19) | C28-C29   | 1.4016(16) |
| C5-C6     | 1.379(2)   | C29-C30   | 1.3839(17) |
| C6-C7     | 1.3985(17) | C30-C31   | 1.400(2)   |
| C9-C10    | 1.5124(14) | C31-C32   | 1.3767(19) |
| C9-C18    | 1.5227(14) | C33-C34   | 1.3665(16) |
| C10-C11   | 1.3669(16) | C33-C40   | 1.4412(15) |
| C10-C12   | 1.4396(15) | C35-C36   | 1.3946(17) |
| C12-C13   | 1.4174(15) | C35-C40   | 1.4155(16) |
| C12-C17   | 1.4031(16) | C36-C37   | 1.3788(19) |
| C13-C14   | 1.4010(16) | C37-C38   | 1.4053(18) |
| C14-C15   | 1.3805(19) | C38-C39   | 1.3836(17) |
| C15-C16   | 1.4055(19) | C39-C40   | 1.4046(16) |

Table S3. Bond lengths [Å] for Ph-TIn.

|                |            | 6              |            |                |            |
|----------------|------------|----------------|------------|----------------|------------|
| Atom-Atom-Atom | Angle      | Atom-Atom-Atom | Angle      | Atom-Atom-Atom | Angle      |
| C13-N1-C11     | 109.44(9)  | C17-C12-C10    | 134.09(10) | N4-C27-C28     | 107.06(10) |
| C7-N2-C8       | 108.54(10) | C17-C12-C13    | 118.97(10) | N4-C27-C32     | 130.66(12) |
| C35-N3-C34     | 108.72(10) | N1-C13-C12     | 107.24(10) | C32-C27-C28    | 122.27(11) |
| C27-N4-C26     | 109.07(10) | N1-C13-C14     | 130.71(11) | C27-C28-C25    | 107.35(10) |
| C2-C1-C9       | 125.32(10) | C14-C13-C12    | 122.03(11) | C29-C28-C25    | 133.80(11) |
| C8-C1-C2       | 106.18(10) | C15-C14-C13    | 117.26(11) | C29-C28-C27    | 118.84(11) |
| C8-C1-C9       | 128.39(10) | C14-C15-C16    | 121.89(11) | C30-C29-C28    | 118.81(12) |
| C3-C2-C1       | 133.88(11) | C17-C16-C15    | 120.64(12) | C29-C30-C31    | 121.19(12) |
| C3-C2-C7       | 119.02(10) | C16-C17-C12    | 119.18(11) | C32-C31-C30    | 121.33(12) |
| C7-C2-C1       | 107.08(10) | C19-C18-C9     | 121.15(9)  | C31-C32-C27    | 117.52(12) |
| C4-C3-C2       | 118.96(11) | C23-C18-C9     | 120.80(10) | C34-C33-C24    | 127.64(10) |
| C3-C4-C5       | 120.96(12) | C23-C18-C19    | 118.04(10) | C34-C33-C40    | 106.12(10) |
| C6-C5-C4       | 121.45(11) | C20-C19-C18    | 120.77(10) | C40-C33-C24    | 126.24(10) |
| C5-C6-C7       | 117.67(12) | C19-C20-C21    | 121.13(10) | C33-C34-N3     | 110.53(11) |
| N2-C7-C2       | 107.65(10) | C20-C21-C24    | 120.83(10) | N3-C35-C36     | 130.52(11) |
| N2-C7-C6       | 130.44(11) | C22-C21-C20    | 118.04(10) | N3-C35-C40     | 107.48(10) |
| C6-C7-C2       | 121.90(11) | C22-C21-C24    | 121.12(10) | C36-C35-C40    | 122.00(11) |
| C1-C8-N2       | 110.54(10) | C21-C22-C23    | 120.99(10) | C37-C36-C35    | 117.85(12) |
| C1-C9-C10      | 113.13(9)  | C18-C23-C22    | 121.00(10) | C36-C37-C38    | 121.21(11) |
| C1-C9-C18      | 111.96(9)  | C25-C24-C21    | 110.70(9)  | C39-C38-C37    | 121.06(11) |
| C10-C9-C18     | 111.49(8)  | C25-C24-C33    | 112.11(9)  | C38-C39-C40    | 118.97(11) |
| C11-C10-C9     | 128.00(10) | C33-C24-C21    | 111.40(9)  | C35-C40-C33    | 107.14(10) |
| C11-C10-C12    | 106.67(9)  | C26-C25-C24    | 128.61(11) | C39-C40-C33    | 133.96(10) |
| C12-C10-C9     | 125.26(10) | C26-C25-C28    | 106.28(10) | C39-C40-C35    | 118.90(10) |
| C10-C11-N1     | 109.68(10) | C28-C25-C24    | 125.10(10) |                |            |
| C13-C12-C10    | 106.92(10) | C25-C26-N4     | 110.17(11) |                |            |

#### Table S4. Bond angles [Å] for Ph-TIn.

|      |            | 1111.       |            |         |
|------|------------|-------------|------------|---------|
| Atom | x          | У           | Z          | U(eq)   |
| N1   | 4484(1)    | 6452.2(9)   | 9272.0(7)  | 25.9(2) |
| N2   | 8037.2(10) | 3020.1(10)  | 7056.5(8)  | 29.6(2) |
| N3   | 2016.9(11) | 12127.1(10) | 3828.3(8)  | 33.5(2) |
| N4   | 7323.6(11) | 10176.9(10) | 2151.0(9)  | 38.3(3) |
| C1   | 5997.5(11) | 4223.6(10)  | 7317.4(8)  | 21.5(2) |
| C2   | 6260.7(11) | 2961.2(10)  | 8086.2(8)  | 21.9(2) |
| C3   | 5532.6(11) | 2374.1(11)  | 8908.5(9)  | 25.1(2) |
| C4   | 6089.9(13) | 1102.9(12)  | 9506.1(9)  | 31.0(3) |
| C5   | 7351.8(13) | 394.6(12)   | 9284(1)    | 33.8(3) |
| C6   | 8088.2(12) | 941.3(11)   | 8477.5(10) | 31.2(3) |
| C7   | 7539.7(11) | 2234.0(11)  | 7890.1(9)  | 25.8(2) |
| C8   | 7098.2(11) | 4209.8(11)  | 6717.1(9)  | 26.9(2) |
| С9   | 4714.4(10) | 5295.4(10)  | 7189.2(8)  | 19.7(2) |
| C10  | 4370.4(10) | 5817(1)     | 8036.0(8)  | 20.0(2) |
| C11  | 5187.0(11) | 5848.9(11)  | 8610.3(8)  | 23.9(2) |
| C12  | 3082.4(11) | 6446.6(10)  | 8352.1(8)  | 21.0(2) |
| C13  | 3194.4(11) | 6804.6(10)  | 9147.3(8)  | 22.6(2) |
| C14  | 2113.4(12) | 7431.1(11)  | 9642.0(9)  | 28.1(3) |
| C15  | 920.2(12)  | 7728.2(12)  | 9302(1)    | 31.9(3) |
| C16  | 782.0(12)  | 7404.9(12)  | 8502.8(10) | 33.3(3) |
| C17  | 1852.4(11) | 6762.9(11)  | 8029.7(9)  | 27.5(2) |
| C18  | 4630.9(10) | 6350.3(10)  | 6139.6(8)  | 19.9(2) |
| C19  | 5224.5(11) | 7245.6(11)  | 5917.0(8)  | 24.0(2) |
| C20  | 5152.9(11) | 8194.5(11)  | 4958.5(9)  | 24.8(2) |

Table S5. Fractional atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for Ph-

Tln.

| C21 | 4465.8(11) | 8300.7(10)  | 4195.2(8)  | 21.8(2) |
|-----|------------|-------------|------------|---------|
| C22 | 3888.5(12) | 7403.3(11)  | 4413.4(9)  | 28.5(3) |
| C23 | 3975.5(12) | 6436.6(11)  | 5369.8(9)  | 27.8(3) |
| C24 | 4335.5(11) | 9387(1)     | 3159.1(8)  | 22.8(2) |
| C25 | 5636.7(11) | 9496(1)     | 2723.2(8)  | 23.9(2) |
| C26 | 6061.8(13) | 10471.8(12) | 2522.7(10) | 33.3(3) |
| C27 | 7722.8(12) | 9005.3(11)  | 2071.7(9)  | 27.6(3) |
| C28 | 6692.6(11) | 8533.7(10)  | 2448.6(8)  | 22.9(2) |
| C29 | 6859.3(12) | 7323.8(11)  | 2479.1(9)  | 28.1(3) |
| C30 | 8015.4(13) | 6649.1(12)  | 2111.7(11) | 35.8(3) |
| C31 | 9012.0(13) | 7151.3(12)  | 1720.3(10) | 36.8(3) |
| C32 | 8886.1(12) | 8326.2(12)  | 1698.6(10) | 33.6(3) |
| C33 | 3376.2(11) | 10627.6(11) | 3222.0(8)  | 23.6(2) |
| C34 | 2838.4(12) | 10884.0(12) | 4082.8(9)  | 29.3(3) |
| C35 | 2003.8(12) | 12703.5(11) | 2779.1(9)  | 27.7(3) |
| C36 | 1327.1(13) | 13941.6(12) | 2155.5(11) | 35.0(3) |
| C37 | 1489.2(13) | 14254.0(12) | 1111.4(10) | 34.2(3) |
| C38 | 2309.6(12) | 13356.4(12) | 686.7(9)   | 30.7(3) |
| C39 | 2991.1(11) | 12130.8(11) | 1303.3(9)  | 26.2(2) |
| C40 | 2844.6(11) | 11785.7(10) | 2369.8(9)  | 23.0(2) |
|     |            |             |            |         |

| Atom | U11     | U22     | U33     | U23      | U13      | U12      |
|------|---------|---------|---------|----------|----------|----------|
|      | 21.7(5) | 20 5(5) | 21.4/5) | 11 (/4)  | 2 ((4)   | 10.2(4)  |
| NI   | 31.7(5) | 28.5(5) | 21.1(5) | -11.6(4) | -3.6(4)  | -10.2(4) |
| N2   | 24.6(5) | 28.5(5) | 30.2(5) | -11.2(4) | 0.9(4)   | -3.9(4)  |
| N3   | 36.8(6) | 30.9(6) | 28.0(5) | -16.2(5) | -2.2(4)  | -0.5(5)  |
| N4   | 40.0(6) | 23.0(5) | 49.5(7) | -11.0(5) | 13.1(5)  | -17.8(5) |
| C1   | 26.1(6) | 20.2(5) | 19.0(5) | -8.0(4)  | -2.7(4)  | -7.1(4)  |
| C2   | 26.2(6) | 21.0(5) | 20.1(5) | -8.6(4)  | -5.9(4)  | -6.3(4)  |
| C3   | 29.1(6) | 24.5(6) | 23.9(5) | -8.6(5)  | -4.6(4)  | -10.0(5) |
| C4   | 39.8(7) | 26.4(6) | 27.4(6) | -3.8(5)  | -8.2(5)  | -15.3(5) |
| C5   | 43.0(7) | 19.7(6) | 35.9(7) | -4.1(5)  | -18.0(6) | -6.8(5)  |
| C6   | 30.2(6) | 24.2(6) | 37.6(7) | -11.9(5) | -11.7(5) | -2.0(5)  |
| C7   | 27.4(6) | 24.9(6) | 25.9(6) | -10.8(5) | -6.7(4)  | -5.8(5)  |
| C8   | 29.2(6) | 23.9(6) | 24.0(6) | -7.6(5)  | -0.1(4)  | -7.1(5)  |
| С9   | 23.5(5) | 18.0(5) | 18.3(5) | -6.3(4)  | -1.4(4)  | -7.9(4)  |
| C10  | 25.2(5) | 16.4(5) | 16.1(5) | -3.8(4)  | -0.7(4)  | -7.3(4)  |
| C11  | 26.7(6) | 23.1(5) | 20.8(5) | -7.4(4)  | -1.3(4)  | -7.8(4)  |
| C12  | 26.9(6) | 16.6(5) | 18.7(5) | -4.6(4)  | -0.1(4)  | -9.1(4)  |
| C13  | 30.3(6) | 18.2(5) | 17.7(5) | -3.7(4)  | 0.1(4)   | -10.4(4) |
| C14  | 38.8(7) | 22.2(6) | 20.9(5) | -8.1(4)  | 5.1(5)   | -10.8(5) |
| C15  | 32.0(6) | 24.4(6) | 31.4(6) | -9.3(5)  | 9.8(5)   | -7.9(5)  |
| C16  | 25.3(6) | 31.6(7) | 39.3(7) | -10.5(5) | 0.1(5)   | -9.3(5)  |
| C17  | 27.6(6) | 27.3(6) | 30.2(6) | -11.6(5) | -2.5(5)  | -10.2(5) |
| C18  | 23.6(5) | 17.1(5) | 18.3(5) | -6.9(4)  | -0.7(4)  | -5.9(4)  |
| C19  | 29.5(6) | 24.3(6) | 21.4(5) | -7.8(4)  | -4.2(4)  | -11.7(5) |
| C20  | 31.9(6) | 22.6(6) | 23.3(5) | -6.4(4)  | -2.0(4)  | -14.7(5) |
| C21  | 26.4(5) | 18.7(5) | 18.6(5) | -6.3(4)  | -0.3(4)  | -6.8(4)  |

**Table S6.** Anisotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for Ph-TIn.

| C22 | 41.3(7) | 27.6(6) | 21.1(5) | -4.9(5)  | -8.9(5)  | -17.2(5) |
|-----|---------|---------|---------|----------|----------|----------|
| C23 | 39.9(7) | 24.3(6) | 24.4(6) | -5.0(5)  | -6.5(5)  | -18.2(5) |
| C24 | 28.3(6) | 18.2(5) | 19.0(5) | -5.1(4)  | -1.1(4)  | -6.8(4)  |
| C25 | 30.1(6) | 17.6(5) | 18.4(5) | -3.4(4)  | -0.4(4)  | -6.2(4)  |
| C26 | 38.1(7) | 19.7(6) | 36.7(7) | -8.9(5)  | 9.1(5)   | -11.0(5) |
| C27 | 31.7(6) | 20.4(6) | 23.0(5) | -1.6(4)  | -0.7(5)  | -8.1(5)  |
| C28 | 27.3(6) | 19.4(5) | 17.1(5) | -3.2(4)  | -4.2(4)  | -5.2(4)  |
| C29 | 30.7(6) | 23.6(6) | 30.4(6) | -10.6(5) | -4.3(5)  | -7.5(5)  |
| C30 | 38.4(7) | 24.4(6) | 40.8(7) | -14.8(5) | -3.2(6)  | -3.3(5)  |
| C31 | 30.8(7) | 28.4(6) | 35.1(7) | -8.7(5)  | 1.7(5)   | 1.9(5)   |
| C32 | 28.6(6) | 29.2(6) | 29.9(6) | -1.9(5)  | 0.8(5)   | -6.8(5)  |
| C33 | 27.0(6) | 21.2(5) | 21.0(5) | -6.2(4)  | -1.1(4)  | -8.1(4)  |
| C34 | 33.1(6) | 27.6(6) | 22.5(6) | -8.9(5)  | -2.0(5)  | -5.5(5)  |
| C35 | 28.8(6) | 25.9(6) | 28.8(6) | -12.2(5) | -4.2(5)  | -6.0(5)  |
| C36 | 35.4(7) | 24.0(6) | 41.8(7) | -14.6(5) | -9.4(5)  | 0.0(5)   |
| C37 | 35.6(7) | 21.8(6) | 38.6(7) | -3.8(5)  | -12.5(5) | -5.6(5)  |
| C38 | 33.6(6) | 29.2(6) | 25.5(6) | -3.5(5)  | -4.7(5)  | -12.2(5) |
| C39 | 27.7(6) | 24.9(6) | 24.5(6) | -7.6(5)  | -0.7(4)  | -9.1(5)  |
| C40 | 23.8(5) | 19.6(5) | 25.0(6) | -7.4(4)  | -1.8(4)  | -7.2(4)  |
|     |         |         |         |          |          |          |

#### 3. Preparation, porosity, and iodine adsorption performance of InPOPs

*Preparation of Polymer-1*: Under nitrogen atmosphere, Ph-TIn (566.3 mg, 1 mmol, 1 eq.) and a certain amount of anhydrous FeCl<sub>3</sub> were added into a dry 100 mL double-necked round-bottomed flask equipped with a magnetic stirrer and a condenser as soon as possible. Subsequently, anhydrous 1,2-dichloroethane (60 mL) was injected into the flask under nitrogen protection. After 10 min of stirring, FDA (the molar ratio of FDA to FeCl<sub>3</sub> was always kept 1:1<sup>1-6</sup>) was added dropwise to the aforementioned mixture. The mixture was stirred at 45 °C for 5 h to form an initial network, then refluxed at 80 °C for another 19 h to strengthen the network. After being cooled down to ambient temperature, the insoluble solid was obtained by filtration and subsequently washed with the recovered mixture of methanol and ethanol to remove unreacted monomers and FeCl<sub>3</sub> until the filtrate became colorless. The material was further purified by Soxhlet extraction with the recovered mixture of methanol and ethanol for 24 h and finally vacuum-dried at 90 °C for 24 h.

The obtained polymers with different FDA/Ph-TIn molar ratios of 6, 8, 10, and 12 are referred to as Polymer-1-1, -1-2, -1-3, and -1-4, respectively. The data of pore properties for the obtained polymers are summarized in Table S7. It is found that with the increase of FDA/Ph-TIn molar ratio, the BET specific surface area changes little and stabilizes at about 460 m<sup>2</sup> g<sup>-1</sup>.

| Decades of EDA and EoCl             | Matorial namo | Specific surface area   | Pore volume         | Average pore size |
|-------------------------------------|---------------|-------------------------|---------------------|-------------------|
|                                     |               | $(S_{BET}, m^2 g^{-1})$ | (V, $cm^3 g^{-1}$ ) | (nm)              |
| FDA-6 eq; FeCl₃-6 eq                | Polymer-1-1   | 468                     | 0.396               | 3.383             |
| FDA-8 eq; FeCl₃-8 eq                | Polymer-1-2   | 455                     | 0.409               | 3.593             |
| FDA-10 eq; FeCl₃-10 eq              | Polymer-1-3   | 455                     | 0.374               | 3.292             |
| FDA-12 eq; FeCl <sub>3</sub> -12 eq | Polymer-1-4   | 456                     | 0.363               | 3.181             |

Table S7. Pore properties of polymers (FDA as crosslinker).

*Preparation of Polymer-2:* Under nitrogen atmosphere, Ph-TIn (566.3 mg, 1 mmol, 1eq.), a certain amount of DCX and anhydrous FeCl<sub>3</sub> (the molar ratio of DCX to FeCl<sub>3</sub> was always kept 1:1<sup>1,7</sup>) were added into a dry 100 mL double-necked round-bottomed flask equipped with a magnetic stirrer and a condenser as soon as possible. Afterward, anhydrous 1,2-dichloroethane (60 mL) was

injected into the aforementioned mixture under a flow of nitrogen. The mixture was heated at 80 °C for 24 h at constant stirring. After cooling to room temperature, the precipitate was collected by filtration and successively washed by the recovered mixture of methanol and ethanol several times until the filtrate turned clear. Further purification of the polymer was carried out by Soxhlet extraction with the recovered mixture of methanol and ethanol for 24 h, and dried under vacuum at 90 °C for 24 h.

The obtained polymers with different DCX/Ph-TIn molar ratios of 4, 6, 8, and 10 are referred to as Polymer-2-1, -2-2, -2-3, and -2-4, respectively. The data of pore properties for the obtained polymers are summarized in Table S8. It is found that with the increase of DCX/Ph-TIn molar ratio, the BET surface area increases from 111 to 759 m<sup>2</sup> g<sup>-1</sup>.

| Dosages of DCX and $FeCl_3$          | Matarial name | Specific surface                                                       | Pore volume Average por |       |
|--------------------------------------|---------------|------------------------------------------------------------------------|-------------------------|-------|
|                                      | Material name | area (S <sub>BET</sub> , m <sup>2</sup> g <sup><math>-1</math></sup> ) | size (nm)               |       |
| DCX-4 eq; FeCl₃-4 eq                 | Polymer-2-1   | 111                                                                    | 0.197                   | 7.079 |
| DCX -6 eq; FeCl <sub>3</sub> -6 eq   | Polymer-2-2   | 539                                                                    | 0.393                   | 2.919 |
| DCX -8 eq; FeCl <sub>3</sub> -8 eq   | Polymer-2-3   | 661                                                                    | 0.465                   | 2.813 |
| DCX -10 eq; FeCl <sub>3</sub> -10 eq | Polymer-2-4   | 759                                                                    | 0.501                   | 2.644 |

Table S8. Pore properties of polymers (DCX as crosslinker).

*Preparation of Polymer-3*: Under nitrogen atmosphere, Ph-TIn (566.3 mg, 1 mmol, 1eq.) and a certain amount of anhydrous FeCl<sub>3</sub> were added into a dry 100 mL double-necked round-bottomed flask as soon as possible. Then, anhydrous 1,2-dichloroethane (60 mL) was injected into the aforementioned mixture under a flow of nitrogen. The reaction mixture was stirred at 80 °C for 24 h and left to cool to room temperature. The insoluble residue was filtered off and washed with the recovered mixture of methanol and ethanol until the filtrate became colorless. The filter cake was successively extracted with the recovered mixture of methanol and ethanol and ethanol and ethanol in a Soxhlet apparatus for 24 h, and then dried in a vacuum oven at 90 °C for 24 h. The obtained polymers with different FeCl<sub>3</sub>/Ph-TIn molar ratios of 8, 10, 12, and 14 are referred to as Polymer-3-1, -3-2, -3-3, and -3-4, respectively. The data of pore properties for the obtained polymers are summarized in Table S9. It is

found that with the increase of FeCl<sub>3</sub>/Ph-TIn molar ratio, the BET surface area increases from 40 to  $135 \text{ m}^2 \text{ g}^{-1}$ .

|                             | <b></b>       | Specific surface area   | Pore volume                                                                                                                                                                              | Average pore size |  |  |
|-----------------------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| Dosage of FeCI <sub>3</sub> | Material name | $(S_{BET}, m^2 g^{-1})$ | Pore volume         Average pore           (V, cm <sup>3</sup> g <sup>-1</sup> )         (nm)           0.101         10.072           0.120         9.217           0.185         9.934 |                   |  |  |
| FeCl₃-8 eq                  | Polymer-3-1   | 40                      | 0.101                                                                                                                                                                                    | 10.072            |  |  |
| FeCl <sub>3</sub> -10 eq    | Polymer-3-2   | 52                      | 0.120                                                                                                                                                                                    | 9.217             |  |  |
| FeCl <sub>3</sub> -12 eq    | Polymer-3-3   | 75                      | 0.185                                                                                                                                                                                    | 9.934             |  |  |
| FeCl <sub>3</sub> -14 eq    | Polymer-3-4   | 135                     | 0.285                                                                                                                                                                                    | 8.419             |  |  |

Table S9. Pore properties of polymers (no crosslinker).

The adsorption capacities of all obtained polymers toward iodine in organic phase were investigated. 5.0 mg of sorbent was immersed in an iodine/cyclohexane solution (20 mL, 200 mg  $L^{-1}$ ) and allowed to stand for 48 h at 25 °C. Then, the supernatant was gauged by employing UV-Vis spectroscopy after adsorption. All materials participated in the adsorption procedure under the same conditions.

The data of iodine adsorption abilities for the obtained polymers are summarized in Fig. S1. It is found that polymer-1-3, polymer-2-2, and polymer-3-2 perform the best in their respective series. In what follows, we renamed the three polymers as InPOP-1, InPOP-2, and InPOP-3, respectively.



**Fig. S1.** (a-c) UV-Vis absorption spectra of iodine/cyclohexane solutions after adsorption by the obtained polymers under the same conditions and (d-f) the corresponding iodine adsorption capacitiy and removal rate.

### 4. FT-IR details of InPOPs

| Wave number                                                     | Vibrational mode of characteristic group                                                   |  |  |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| (cm <sup>-1</sup> )                                             |                                                                                            |  |  |  |  |  |  |
| 3418                                                            | N-H stretching vibration on indole ring; O-H stretching vibration of water coming fro      |  |  |  |  |  |  |
| 2923, 2856                                                      | C-H stretching vibration of methylene                                                      |  |  |  |  |  |  |
| 1610                                                            | Skeleton stretching vibration of aromatic ring (indole ring and benzene ring)              |  |  |  |  |  |  |
| 1450                                                            | Skeleton stretching vibration of aromatic ring (indole ring and benzene ring);             |  |  |  |  |  |  |
| 1450                                                            | C-H bending vibration of methylene                                                         |  |  |  |  |  |  |
| 745 (weak)                                                      | C-H bending vibration of four adjacent hydrogen atoms on the indole ring (benzo)           |  |  |  |  |  |  |
| Table S11.         Analysis of characteristic peaks of InPOP-2. |                                                                                            |  |  |  |  |  |  |
| Wave number                                                     | Vibrational mode of characteristic group                                                   |  |  |  |  |  |  |
| (cm <sup>-1</sup> )                                             |                                                                                            |  |  |  |  |  |  |
| 3/120                                                           | N-H stretching vibration on indole ring; O-H stretching vibration of water coming from     |  |  |  |  |  |  |
| 5425                                                            | KBr                                                                                        |  |  |  |  |  |  |
| 2923, 2850                                                      | C-H stretching vibration of methylene                                                      |  |  |  |  |  |  |
| 1610, 1509                                                      | Skeleton stretching vibration of aromatic ring (indole ring and benzene ring)              |  |  |  |  |  |  |
| 745 (weak)                                                      | C-H bending vibration of four adjacent hydrogen atoms on the indole ring (benzo)           |  |  |  |  |  |  |
|                                                                 | Table S12.         Analysis of characteristic peaks of InPOP-3.                            |  |  |  |  |  |  |
| Wave number                                                     |                                                                                            |  |  |  |  |  |  |
| (cm <sup>-1</sup> )                                             | vibrational mode of characteristic group                                                   |  |  |  |  |  |  |
| 3418                                                            | N-H stretching vibration on indole ring; O-H stretching vibration of water coming from KBr |  |  |  |  |  |  |
| 2923                                                            | C-H stretching vibration of methyne                                                        |  |  |  |  |  |  |
| 1610, 1455                                                      | Skeleton stretching vibration of aromatic ring (indole ring and benzene ring)              |  |  |  |  |  |  |
| 745 (strong)                                                    | C-H bending vibration of four adjacent hydrogen atoms on the indole ring (benzo)           |  |  |  |  |  |  |

 Table S10.
 Analysis of characteristic peaks of InPOP-1.

# 5. Comparison of iodine adsorption capacities in vapor phase

Table S13. Summary of the iodine vapor adsorption capacity of various functionalized materials at 75 °C under

|                  |                                                   |                                             | Adsorption  |      |  |
|------------------|---------------------------------------------------|---------------------------------------------|-------------|------|--|
| 1                | Material type                                     | Material name                               | capacity    | Ref. |  |
|                  |                                                   |                                             | (g/g)       |      |  |
|                  | Bayberry tannin and nano-                         |                                             |             |      |  |
|                  | silver                                            | Ag <sup>0</sup> @BT-nCF                     | 1.704       | [8]  |  |
|                  | based on collagen fiber                           |                                             |             |      |  |
|                  | Bi <sub>2</sub> S <sub>3</sub> @polyacrylonitrile |                                             | 0.986       |      |  |
|                  | Hybrid bead                                       | Bi <sub>2</sub> S <sub>3</sub> @PAN-70%     |             | [9]  |  |
|                  | Cu-BTC@PES composite bead                         | Cu-BTC@PES                                  | up to 0.639 | [10] |  |
|                  |                                                   | NiTi-S <sub>x</sub> -LDH                    | 0.526       |      |  |
|                  | Layered double hydroxides<br>(LDHs)               | NiTi-CO₃-LDH                                | 0.250       | [11] |  |
|                  |                                                   | NiTi-NO <sub>3</sub> -LDH                   | 0.191       |      |  |
|                  |                                                   | BiZnAl-LDH                                  | up to 0.433 | [12] |  |
| letal-containing | Metal-organic frameworks<br>(MOFs)                | UiO-66                                      | 0.68        |      |  |
| materials        |                                                   | UiO-66-BA-20                                | 1.509       | [13] |  |
|                  |                                                   | UiO-66-BA-35                                | 1.610       |      |  |
|                  |                                                   | UiO-66-BA-50                                | 1.578       |      |  |
|                  |                                                   | $[Zn_2(tptc)(apy)_{2-x}(H_2O)_x]\cdot H_2O$ | 2.16        | [14] |  |
|                  | IL@MOF composite                                  |                                             | 7.35        | [4]  |  |
|                  | (IL stands for ionic liquid)                      | il@PCN-333(AI)                              |             | [15] |  |
|                  | MOF@Polymer composite beads                       | HKUST-1@PES                                 | 0.376       |      |  |
|                  |                                                   | HKUST-1@PVDF                                | 0.225       | [16] |  |
|                  |                                                   | HKUST-1@PEI                                 | 0.348       |      |  |
|                  | Electrospun fiber adsorbents                      | N-MOF-PAN fibers                            | 3.20        | [4-] |  |
|                  |                                                   | MOF-PAN fibers                              | 1.13        | [17] |  |

ambient pressure.

|                  |                                           |                           | 2.40 | [10]      |
|------------------|-------------------------------------------|---------------------------|------|-----------|
| Carbon materials | Hyperporous carbon                        | THPS-C                    | 3.40 | [18]      |
|                  | Carbon fabrics                            | CC-PNP                    | 1.02 | [19]      |
|                  |                                           | C60-CC-PNP                | 2.40 | -         |
|                  | Activated charcoal                        | AC                        | 2.46 | This work |
|                  | Organic cages                             | BPPOC                     | 5.64 | [20]      |
|                  |                                           | BPy-Cage                  | 3.23 | [21]      |
|                  | Porous silsesquioxane-imine<br>frameworks | PSIF-1a                   | 4.85 | [22]      |
|                  |                                           | PSIF-2a                   | 3.46 |           |
|                  |                                           | PSIF-3a                   | 4.11 |           |
|                  |                                           | PSIF-4a                   | 2.44 |           |
|                  |                                           | PSIF-5a                   | 3.01 |           |
|                  |                                           | USTB-1                    | 4.45 | [20]      |
|                  | Covalent organic frameworks<br>(COFs)     | USTB-2                    | 4.38 |           |
|                  |                                           | USTB-3                    | 3.14 |           |
|                  |                                           | USTB-1c                   | 5.80 |           |
|                  |                                           | USTB-2c                   | 4.57 |           |
| Porous organic   |                                           | USTB-3c                   | 3.30 |           |
| polymers (POPs)  |                                           | SIOC-COF-7                | 4.81 | [23]      |
|                  | Covalent triazine frameworks<br>(CTFs)    | $CTF-1@ZnCl_2$            | 4.31 |           |
|                  |                                           | $CTF-1@ZnCl_2 \cdot H_2O$ | 2.41 | [24]      |
|                  |                                           | CTF-1@TFMS                | 1.18 |           |
|                  | BODIPY-based conjugated                   | BDP-CPP-1                 | 2.83 |           |
|                  | porous polymers                           | BDP-CPP-2                 | 2.23 | [25]      |
|                  | Charged porous<br>aromatic frameworks     | PAF-23                    | 2.71 |           |
|                  |                                           | PAF-24                    | 2.76 | [26]      |
|                  |                                           | PAF-25                    | 2.60 |           |
|                  | Thiophene-based                           | S-HCP                     |      | [27]      |
|                  | hypercrosslinked polymer                  |                           | 3.60 |           |

|   | Melamine-functionalized | TPA-TPC-6MA  | 2.92       |           |
|---|-------------------------|--------------|------------|-----------|
|   |                         | TPA-TPC-8MA  | 4.11       | [28]      |
|   |                         | TPA-TPC-10MA | 5.05       |           |
|   | Adamantana basad navaus | NOP-54       | 2.02       |           |
|   |                         | NOP-53       | 1.77       | [1]       |
|   | organic polymers        | NOP-52       | 1.39       |           |
| - | Ferrocene-based porous  |              | 2.00       | [20]      |
| _ | organic polymer         | FCTZ-POP     | 3.96       | [29]      |
|   | Pitch-based porous      |              |            | [20]      |
|   | polymer bead            | PHCP@PES     | up to 0.77 | [30]      |
| - |                         | CSU-CPOPs-1  | 4.94       |           |
|   | Carbazole-based porous  | CSU-CPOPs-2  | 4.24       | [7]       |
|   | organic polymers        | CSU-CPOPs-3  | 3.47       |           |
|   |                         | CTF-CAR      | 2.86       | [31]      |
|   | to della la consid      | InPOP-1      | 2.19       |           |
|   | indole-based porous     | InPOP-2      | 1.92       | This work |
|   | organic polymers        | InPOP-3      | 2.92       |           |
|   |                         |              |            |           |

#### 6. Supporting references

[1] D. Y. Chen, Y. Fu, W. G. Yu, G. P. Yu, C. Y. Pan, Chem. Eng. J., 2018, 334, 900–906.

- [2] T. Jin, S. H. An, X. J. Yang, J. Hu, H. L. Wang, H. L. Liu, Z. Q. Tian, D. E. Jiang, N. Mehio, X. Zhu, *Aiche J.*, 2016, 62, 1740–1746.
- [3] Y. T. Xia, Y. K. Li, Y. T. Gu, T. Jin, Q. Yang, J. Hu, H. L. Liu, H. L. Wang, Fuel, 2016, 170, 100–106.
- [4] C. Zhang, P. C. Zhu, L. X. Tan, J. M. Liu, B. E. Tan, X. L. Yang, H. B. Xu, Macromolecules, 2015, 48, 8509–8514.
- [5] X. Zhu, S. M. Mahurin, S. H. An, C. Do-Thanh, C. C. Tian, Y. K Li, L. W. Gill, E. W. Hagaman, Z. J. Bian, J. H. Zhou, J.
- Hu, H. L. Liu, S. Dai, Chem. Commun., 2014, 50, 7933.
- [6] B. Y. Li, R. N. Gong, W. Wang, X. Huang, W. Zhang, H. M. Li, C. X. Hu, B. E. Tan, *Macromolecules*, 2011, **44**, 2410–2414.
- [7] S. H. Xiong, X. Tang, C. Y. Pan, L. Li, J. T. Tang, G. P. Yu, ACS Appl. Mater. Interfaces., 2019, 11, 27335–27342.
- [8] B. Wang, H. Zhu, T. Duan, G. Q. He, Y. X. Wei, J. Zhou, Appl. Surf. Sci., 2022, 596, 153585.
- [9] Q. Yu, X. H. Jiang, Z. J. Cheng, Y. W. Liao, Q. Pu, M. Duan, New J. Chem., 2020, 44, 16759–16768.
- [10] Q. Zhao, L. Zhu, G. H. Lin, G. Y. Chen, B. Liu, L. Zhang, T. Duan, J. H. Lei, ACS Appl. Mater. Interfaces., 2019, 11, 42635–42645.
- [11] G. H. Lin, L. Zhu, T. Duan, L. Zhang, B. Liu, J. H. Lei, Chem. Eng. J., 2019, 378, 122181.
- [12] T. D. Dinh, D. X. Zhang, V. N. Tuan, *RSC Adv.*, 2020, **10**, 14360–14367.
- [13] M. M. Jia, S. Y. Rong, P. C. Su, Li, W. B. Su, Chem. Eng. J., 2022, 437, 135432.
- [14] R. X. Yao, X. Cui, X. X. Jia, F. Q. Zhang, X. M. Zhang, Inorg. Chem., 2016, 55, 9270–9275.
- [15] Y. Z. Tang, H. L. Huang, J. Li, W. J. Xue, C. L. Zhong, J. Mater. Chem. A, 2019, 7, 18324–18329.
- [16] B. Valizadeh, T. N. Nguyen, B. Smit, K. C. Stylianou, Adv. Funct. Mater., 2018, 28, 1801596.
- [17] D. Y. Chen, T. T. Ma, X. Y. Zhao, X. F. Jing, R. Zhao, G. S. Zhu, ACS Appl. Mater. Interfaces, 2022, 14, 47126–47135.
- [18] Q. M. Zhang, T. L. Zhai, Z. Wang, G. Cheng, H. Ma, Q. P. Zhang, Y. H. Zhao, B. E. Tan, C. Zhang, *Adv. Mater. Interfaces,* 2019, **6**, 1900249.
- [19] R. Muhammad, N. F. Attia, , S. Cho, J. Park, M. Jung, J. Chung, H. Oh, Thin Solid Films, 2020, 706, 138049.
- [20] C. Liu, Y. C. Jin, Z. H. Yu, L. Gong, H. L. Wang, B. Q. Yu, W. Zhang, J. Z. Jiang, J. Am. Chem. Soc., 2022, 144, 12390–12399.

- [21] D. Luo, Y. L. He, J. Y. Tian, J. L. Sessler, X. D. Chi, J. Am. Chem. Soc., 2022, 144, 113–117.
- [22] M. Janeta, W. Bury, S. Szafert, ACS Appl. Mater. Interfaces, 2018, 10, 19964–19973.
- [23] Z. J. Yin, , S. Q. Xu, T. G. Zhan, Q. Y. Qi, Z. Q. Wu, X. Zhao, Chem. Commun., 2017, 53, 7266–7269.
- [24] X. M. He, S. Y. Zhang, X. Tang, S. H. Xiong, C. X. Ai, D. Y. Chen, J. T. Tang, C. Y. Pan, G. P. Yu, *Chem. Eng. J.*, 2019, 371, 314–318.
- [25] Y. L. Zhu, Y. J. Ji, D. G. Wang, Y. Zhang, H. Tang, X. R. Jia, M. Song, G. P. Yu, G. C. Kuang, J. Mater. Chem. A, 2017, 5, 6622–6629.
- [26] Z. J. Yan, Y. Yuan, Y. Y. Tian, D. M. Zhang, G. S. Zhu, Angew. Chem. Int. Ed., 2015, 54, 12733–12737.

[27] X. M. Li, G. Chen, H. Xu, Q. Jia, Sep. Purif. Technol., 2019, 228, 115739.

- [28] D. Zhang, Y. P. Chen, J. J. Wang, Y. Wang, Y. W. Cao, J. W. Li, F. Zhou, J. H. Huang, Y. N. Liu, Chem. Eng. J., 2023, 460, 141669.
- [29] Y. Wang, J. Tao, S. H. Xiong, P. G. Lu, J. T. Tang, J. Q. He, M. U. Javaid, C. Y. Pan, G. P. Yu, Chem. Eng. J., 2020, 380, 122420.
- [30] G. Y. Chen, Q. Zhao, Z. R. Wang, M. Jiang, L. Zhang, T. Duan, L. Zhu, J. Hazard. Mater., 2022, 434, 128859.
- [31] H. Y. Wang, N. Qiu, X. F. Kong, Z. G. Hu, F. X. Zhong, Y. S. Li, H. J. Tan, ACS Appl. Mater. Inter., **2023**, 15, 14846–14853.