Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Butterfly wing type new push-pull A- π -D- π -A organic fluorophore:

Synthesis, photophysical, DFT and nonlinear optical property studies

Ananthan Alagumalai¹, Soumya Shaswati Sahu², Upakarasamy Lourderaj²,

Sai Muthukumar Vijayasayee^{3*}, Ananthanarayanan Krishnamoorthy^{1*}Senthil A.

Gurusamy Thangavelu^{1*}

* Corresponding author

¹Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. Pin Code – 603203.

²School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P. O. Jatni, Khurda, Odisha, India – 752050

³Department of Physics, Sri Sathya Sai Institute of Higher Learning, Vidyagiri, Prasanthi Nilayam, Andhra Pradesh, India. Pin Code – 515134.

E-mail:

Sai Muthukumar Vijayasayee: <u>vsaimuthukumar@sssihl.edu.in</u> Ananthanarayanan Krishnamoorthy: <u>ananthak@srmist.edu.in</u> Senthil A. Gurusamy Thangavelu: <u>senthilt1@srmist.edu.in</u>

Page | 2

Fig. S4:¹H-NMR data of compound 4

Fig. S5:¹³C-NMR data of compound 4

Fig. S6: MALDI-TOF data of compound 4

Fig. S8:13C-NMR data of compound 5

Fig. S9: HPLC-MS data of compound 5

Fig. S11:¹³C-NMR data of compound AA2

Fig. S12: MALDI-TOF data of compound AA2

Fig. S13. FT-IR data of compound AA2

Fig. S14. Digital photograph of AA2 molecule dissolved in different solvents.

Fig. S15. AA2 molecule in toluene at various concentrations ranging from 10^{-5} to 10^{-7} M at room temperature. (a) UV-vis absorption spectra, (b) corresponding linear graph and (c) PL emission spectra.

Relative fluorescence quantum yield of the compound AA2

The relative fluorescence quantum yield of the compound AA2 in different solvents was studied in this context. To identify the relative fluorescence quantum yield of AA2, Nile blue (NB) was chosen as the standard reference with fluorescence quantum yield of 0.27 at excitation wavelength of 540 nm in the medium of methanol. Based on the equation shown below, we calculated the quantum yield.

$$\Phi_S = \Phi_R \times \frac{A_R}{A_S} \times \frac{I_S}{I_R} \times \frac{\eta_S^2}{\eta_R^2}$$

Where, Φ_S denoted as sample quantum yield, Φ_R mentiond as reference quantum yield, A_R referred as absorbance of the reference, A_S as the absorbance of sample, I_S as the area under the fluorescence curve of the sample, I_R as the area under the fluorescence curve of the solvent refractive index of the sample and η_R as the solvent refractive index of the reference.

Fig. S16. Time-resolved photoluminescence (TRPL) profile of AA2 in different solvents

Fig. S17. Cyclic voltammetry of AA2 in dry DCM using the supporting electrolyte of n-butylammonium hexafluorophosphate (0.1 M NBu_4PF_6).

 Table S1 Comparison of simulated absorption and emission wavelengths (nm) and

 HOMO-LUMO gap (eV) for AA2 molecule using different methods

Methods	λ _{max} (absorption) (nm)	λ _{max} (emission) (nm)	HOMO (eV)	LUMO (eV)	HOMO-LUMO gap
B3LYP/6-31G**	1005	1222	-5.02	-2.93	2.09
CAM-B3LYP/6-31G**	495	642	-6.17	-1.83	4.33
ωB97XD/6-31G**	423	596	-6.77	-1.36	5.41
B3LYP/6-31+G*	1105	1317	-5.24	-3.22	2.01
CAM-B3LYP/6-31+G*	508	663	-6.37	-2.12	4.25
B3LYP/6-311G	712	1126	-5.34	-3.31	2.03
CAM-B3LYP/6-311G	505	639	-6.47	-2.20	4.27

Cartesian coordinates for the optimized geometries of AA2 in ground (S_0) and excited (S_1) states at CAM-B3LYP/6-31+G* level of theory using CHCl₃ as solvent:

AA2 (S₀)

107

С	1.29180000	2.43007800	-1.43157000
С	2.43953700	3.12544200	-1.01753000
С	3.65189000	2.48191400	-0.82758300
С	3.78179500	1.10154000	-1.01408300
С	2.63919500	0.40662300	-1.42758400
С	1.43326100	1.05150300	-1.66105200
Н	2.39872200	4.18996400	-0.83620400
Н	4.50174700	3.07812000	-0.51248200
Н	2.69866100	-0.66498300	-1.59886300
С	-3.54262200	2.39323200	-0.97995600
С	-2.34046800	3.06737900	-1.12200800
С	-1.15860400	2.40017200	-1.48381300
С	-1.25568300	1.01807700	-1.71620200
С	-2.45330500	0.34307300	-1.53061800
С	-3.62899800	1.00921100	-1.16499100
Н	-4.42030300	2.96822000	-0.70422000
Н	-2.33517900	4.13346400	-0.94487600
Н	-2.47841700	-0.73001600	-1.70092800
S	0.11466500	0.13094700	-2.40139300
Ν	0.06188000	3.08293500	-1.62586700
С	0.04411300	4.54705800	-1.69035400
Н	-0.81827400	4.83236200	-2.29948300
С	0.00300200	5.29570000	-0.35159700
Н	0.88021200	5.04337100	0.25302300
Н	-0.86284800	4.97492000	0.23689000

С	-0.05393600	6.80823300	-0.56380000
Н	-0.94064900	7.05949200	-1.16267400
Н	0.92425400	4.85680600	-2.26088600
Н	0.81547800	7.12738000	-1.15560100
С	-0.08974200	7.59688400	0.74459900
Н	-0.95809900	7.27651300	1.33706600
Н	0.79810000	7.34773300	1.34238500
С	-0.15053200	9.10952500	0.53739800
Н	-1.03862600	9.35804300	-0.06075500
Н	0.71778300	9.42940300	-0.05584700
С	-0.18638900	9.89999200	1.84446800
H	-1.05436500	9.58024800	2.43858400
Н	0.70189900	9.65258500	2.44307100
С	-0.24826100	11.41306300	1.63968400
H	-1 13585700	11,66045000	1.04201100
н	0 61918900	11 73294000	1 04686900
C	-0.28421600	12,19311400	2,95217800
н	-0.32875700	13 27313500	2 77601000
н	-1 15962100	11 91636100	3 55129100
н	0 60794600	11 99007200	3 55607800
C	-4 85873600	0 23533100	-1 00459200
C	-6 06973300	0.23535100	-0 66038200
u u	-4 74965500	-0 83199500	-1 18714000
п п	-6 20080400	1 77259600	-0 47354000
C C	-7 25821300	_0 10093900	-0 50000400
C	-7.42560800	-0.10903000 -1.47394700	-0.50999400
C	- 7.42303000	-1.4/304/00	-0.07520700
S C	-8.74997900	-1 91640900	-0.03320300
	-8.73880700	-1.91040000	-0.43033700
С	-0.02082200	-2.14011400	-0.90140400
	-9.60788600	-0.89700700	-0.08122100
п	-9.03092900	-2.944/0/00	-0.31333900
C	-11.00087800	-0.03001000	0.24043400
C	5.02505500	0.33921000	-0.01120000
	0.2142/000	0.00031900	-0.43900100
п	4.94/08400	-0.71174000	-0.90040100
H Q	0.31449100	1.95529500	-0.23891800
	7.42023300	0.07826700	-0.25549300
	7.62704700	-1.28041200	-0.40999300
S	8.8830/300	0.85997600	0.229/4/00
C	8.94//4300	-1.68015600	-0.14034800
H	6.8488/300	-1.9/140300	-0.71012100
C	9.77848800	-0.63446100	0.22618/00
H	9.26710800	-2./1210100	-0.21/10400
C	11.16/09000	-0.60883100	0.5/391900
H	11.59141700	0.36049400	0.82858100
C	12.05/12600	-1.62341200	0.635/0400
C	13.45268200	-1.3834/200	1.01513200
S	11./9828600	-3.32/5/100	0.302/3800
N	14.18113900	-2.59011400	1.0155/600
U	13.95798000	-0.31562500	1.30108500
C	13.4/962/00	-3.69613300	0.65860100
C	13.91743500	-5.00387200	0.55319500
C	12.97890700	-6.00274400	0.16201200
N	12.20704000	-6.80681400	-0.15704700
C	15.23948700	-5.47125400	0.79183800
N	16.29665600	-5.91320400	0.96819100
С	15.61225800	-2.54060200	1.35819200
С	16.49904000	-2.40331300	0.12838700

Н Н Н Н С С С С Л С Н Н Н Н Н	$\begin{array}{c} 15.85644800\\ 15.72074700\\ 17.54567800\\ 16.38694000\\ 16.26694100\\ -11.35828500\\ -11.95879600\\ -11.87426400\\ -13.61523200\\ -10.89465300\\ -13.13222200\\ -13.22982200\\ -13.03014900\\ -12.44783300\\ -14.18912800\\ -13.11098500\\ -12.03897800\\ \end{array}$	-3.42500800 -1.67139400 -2.36149100 -3.25131800 -1.48296700 0.14407500 -1.81936300 -3.25856600 -1.38374800 -3.91026200 -3.86932100 -5.32665000 -6.08936900 -5.58079600 -5.55025600 -7.16247200 -5.89032800	1.94368100 2.00689600 0.44349500 -0.55196000 -0.41448400 0.47882600 0.33028500 0.10176600 0.78107900 -0.21399000 0.29224000 0.11059100 1.41299800 -0.60469700 -0.35205900 1.21686100 1.82965900
H C C N C N AA2 (S ₁) 107	-13.78492500 -14.14481800 -15.46741900 -16.04903300 -16.58142300 -16.35155200 -17.05997600	-5.82656700 -3.04277400 -3.35970200 -4.65601400 -5.68635200 -2.30265600 -1.43186800	2.15859900 0.66041600 0.93081600 0.89810500 0.89275700 1.29029900 1.58165200
C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 1.28344800\\ 2.44041000\\ 3.66790400\\ 3.81486300\\ 2.66460500\\ 1.43108000\\ 2.38986400\\ 4.51984200\\ 2.73619700\\ -3.58277000\\ -2.37717000\\ -1.16713300\\ -1.26930300\\ -2.47663200\\ -3.68520500\\ -4.46674200\\ -2.36928300\\ -2.51085500\\ 0.10478300\\ 0.04245500\\ 0.03408100\\ -0.80958600\\ 0.03278300\\ 0.83444500\\ -0.91125700\\ -0.96388900\\ 0.92659100\\ 0.79198400\\ \end{array}$	2.19227900 2.93832800 2.33293200 0.93990300 0.19660100 0.79721400 4.01269400 2.96538700 -0.88503800 2.24825100 2.88522200 2.16914600 0.75139300 0.11871600 0.83070400 2.85832300 3.96430000 -0.96644300 -0.23549900 2.82643500 4.28692200 4.52348900 5.11675100 4.90105200 4.82788000 6.61263200 6.82303600 4.54143100 6.89697000	-1.19928300 -0.90442200 -0.72033900 -0.80338000 -1.08818900 -1.29717200 -0.80260100 -0.49643300 -1.16414400 -0.93519200 -1.08424300 -1.26955200 -1.33146200 -1.15246800 -0.94826700 -0.78875900 -1.03450400 -1.19497000 -1.38204700 -1.57712300 -2.22797400 -0.29186300 0.34135800 0.29511000 -0.60036000 -1.22957300 -2.15105900 -1.19384300

Н	-1.02785000	7.19032700	1.25236300
Н	0.72785800	7.27170800	1.28407300
С	-0.21481200	8.97513700	0.35509000
Н	-1.09298700	9.18049800	-0.27320300
Н	0.66275200	9.26302600	-0.24082600
С	-0.27911900	9.84432200	1.60999700
Н	-1.15580400	9.55570100	2.20714100
Н	0.59967700	9.64091900	2.23839100
C	-0.34664600	11.34125000	1.31030100
Н	-1,22460700	11,54436100	0.68250800
н	0 52960300	11 63012500	0.71453300
C	-0 41180900	12 20086700	2 57088900
с u	-0 45956400	13 267//800	2.37605700
11	1 20659600	11 05565600	2.52095700
п	-1.29030000	12 04220000	3.10992200
H C	0.47014700	12.04220000	3.20240700
C	-4.89687700	0.11643300	-0.78231700
C	-6.15503000	0.67239800	-0.58552100
Н	-4.81488300	-0.96699400	-0.8195/200
Н	-6.24666900	1.75434600	-0.54951100
С	-7.33553500	-0.06070100	-0.42959500
С	-7.52826400	-1.46732700	-0.42628800
S	-8.87632900	0.74174900	-0.19564500
С	-8.83037500	-1.86557000	-0.24703600
Н	-6.70857000	-2.16429100	-0.55440100
С	-9.74788400	-0.79056200	-0.09969000
Н	-9.16871500	-2.89170200	-0.21269700
С	-11.13299100	-0.74996000	0.08274200
С	5.07831900	0.23705300	-0.61468500
С	6.27285000	0.79336700	-0.33372800
Н	5.01721600	-0.84404000	-0.72028000
Н	6.35407100	1.87142000	-0.22266700
С	7.50352900	0.04687500	-0.16354800
C	7,73643700	-1,31442000	-0.25477200
S	8 96882700	0 88646700	0 20710600
C	9 07730900	-1 66889200	-0.03089800
е н	6 96203700	-2 03801300	-0 47815600
C C	0.90203700	-0 59564300	0.47015000
	9.09092000	-0.30304300	0.23714300
п С	9.41034100	-2.09014200	-0.00495500
	11.30200300	-0.51106900	0.51145300
H C	11.71132500	0.4/6/6200	0.71408700
C	12.22287700	-1.49912300	0.55509000
C	13.62900300	-1.20888400	0.8528/500
S	11.99920200	-3.21/44/00	0.27710500
N	14.39397100	-2.39206200	0.83685000
0	14.11468600	-0.11991500	1.08909900
С	13.70947600	-3.52658300	0.54151700
С	14.18218000	-4.82184400	0.43467100
С	13.25460200	-5.85717800	0.11946700
N	12.49082300	-6.69074500	-0.13720700
С	15.53087400	-5.24246800	0.60037900
N	16.61074000	-5.64717700	0.71896800
С	15.83934700	-2.29152800	1.09960800
С	16.65296900	-2.14326900	-0.17855600
Н	16.14334900	-3.15929300	1.68187300
Н	15.95469700	-1.41013200	1.73049800
 Н	17 71357300	-2 06756200	0 07804200
н	16 52903500	-3 00197500	-0 84320200
н Н	16 36473000	-1 2363/600	_0.04320200 _0.71709600
11	LU.JU4/JJUU	I.ZJUJ40UU	U. / I / UO 0 U U

Н	-11.54563400	0.25599600	0.13812500
С	-12.09134600	-1.75961000	0.20115900
С	-11.97307400	-3.19024300	0.21427800
S	-13.77515900	-1.29324800	0.38532000
0	-10.96313200	-3.89056800	0.12308900
Ν	-13.25552500	-3.79400600	0.35558300
С	-13.32643800	-5.26035300	0.40245700
С	-13.27795300	-5.79743000	1.82669800
Н	-12.46318100	-5.60849900	-0.16446200
Н	-14.22516400	-5.57940300	-0.12251300
Н	-13.32884700	-6.89009900	1.80354900
Н	-12.34404200	-5.50650800	2.31539300
Н	-14.11700200	-5.43422600	2.42600400
С	-14.30179600	-2.94975100	0.46984300
С	-15.66035400	-3.24115500	0.63367300
С	-16.23389100	-4.53294800	0.73866100
N	-16.76004400	-5.56409500	0.83375900
С	-16.57542300	-2.15800700	0.71611400
N	-17.31208200	-1.26265300	0.78215400

Table S2 Comparison of Inorganic & Nanostructured based Optical limiters underNanosecond pulse Excitation¹

S.No	Molecule name/ configuration	Concentration/ Solvent	Linear Transmittance (LT) / Laser Wavelength / Pulse-width	Optical Limiting Threshold & <i>undesirable</i> <i>LT</i> " (X) "
1.	SWNT-Carbon Nanotubes	CHCl₃	13% 532 nm/ 5 ns	0.04 J/cm ²
2.	PbPc(β-CP)4	CHCl₃	62% 532 nm/ 8 ns	0.07 J/cm ²
3.	SWNT-Carbon Nanotubes	H ₂ O	24% 532 nm/ 5 ns	0.15 J/cm ²
4.	Aq GO	-	70 % 532 nm/ 35 ns	0.2 J/cm ²
5.	Fullerene - C ₆₀	Toluene	65 % 532 nm/ 5 ns	0.2 J/cm ²
6.	Gold Nanoparticles	H ₂ O	532 nm/ 14 ns	0.2 J/cm ²
7.	Mentho-C ₆₀ - Benzoyl	Toluene	70 % 532 nm/ 5 ns	0.35 J/cm ²
8.	Ag Nps/ rGO	-	80 % 532 nm/ 10 ns	0.38 J/cm ²

13	ΑΑ2 Α-π-D-π-Α	0.5 mM Toluene	75 % 532 nm/ 20 ns	0.98 J/cm ²
12	Graphite	-	79.7 % 532 nm/ 6 ns	15.15 J/cm ²
11	WSe ₂	-	55.1 % 532 nm/ 6 ns	7.2 J/cm ²
10	Gold NWs	-	70% 532 nm/ 7 ns	1.56 J/cm ²
9	CBS	H ₂ O	40 % 532 nm/ 20 ns	1 J/cm ² Ӿ

References

1 R. Gadhwal and A. Devi, *Opt. Laser Technol.*, 2021, **141**, 107144.