Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Ni₅P₄-embedded FeV LDH porous nanosheets for enhancing oxygen

evolution and urea oxidation reaction

Jibiao Guan^a, Xiao Li^a, Yingjing Zhu^a, Yinchen Dai^a, Rui Zhang^a,Baochun Guo^b, Ming Zhang^a* ^aNational Engineering Lab for Textile Fiber Materialsc and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China

^bDepartment of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China

Email: zhangming@zstu.edu.cn

These authors contributed equally: Jibiao Guan, Xiao Li

Fig. S1 (a-b) SEM images of FeV LDH.

Fig. S3 (a-b) XPS spectra of Ni 2p and P 2p for Ni₅P₄.

Fig. S4 (a-b) SEM images of Ni₅P₄.

Fig. S5 (a) Nitrogen adsorption-desorption isotherm of Ni₅P4@FeV LDH; (b) the pore size distribution of Ni₅P4@FeV LDH.

Fig. S6 (a-b) The LSV curves and tafel slope for OER for Ni₅P₄@FeV LDH with different amount of V element.

Fig. S7(a-c) Cyclic voltammograms at the scan rates from 100 to 200 mV dec⁻¹ for different catalyst.

Fig. S8 (a-b) XPS spectra of Ni 2p and Fe 2p for Ni₅P₄ after electrocatalysis stability test.

Fig. S9 (a) XRD pattern of Ni₅P₄@FeV LDH after stability test.

Fig. S10 (a-b) SEM images of Ni₅P₄@FeV LDH after stability test.

Fig. S11 The in-situ Raman spectra of Ni₅P₄@FeV LDH in 1 M KOH.

Element	Mass (%)	Atomic (%)
Р	30.73	45.53
Ni	62.61	48.95
Fe	6.06	4.98
V	0.60	0.54

Table S1. The atomic percentage of each element in the sample of Ni_5P_4 @FeV LDH.

Table S2. Comparison of the OER activity of several recently catalysts.

Catalysts	Electrolyte	Overpotential	Reference
		/ 10 mA cm ⁻²	
Ni ₅ P ₄ @FeV LDH	1 M KOH	204 mV	This work
Cobalt substituted NiFe	1 M KOH	290 mV	1
Ag-CoFe@NC	1 M KOH	320 mV	2
CoFe@NC/NCHNSs-700	1 M KOH	285 mV	3
NiCo-LDH@FeOOH/CFP	1 M KOH	224 mV	4
CoNiN@NiFe LDH	1 M KOH	227 mV	5
CoFe-P/NF	1 M KOH	287 mV	6
NiFe-LDH-0.4M HMS	1 M KOH	290 mV	7
CoNi-LDH@PCPs	1 M KOH	350 mV	8
Ag@NiFe LDH	1 M KOH	246 mV	9
CrCoFe LDHs/NF	1 M KOH	238 mV	10

Table. S3 Comparison of the UOR activity of several recently catalysts.

Catalysts	Electrolyte	Potential (V vs. RHE) / mA cm ⁻²	Reference
Ni ₅ P ₄ @FeV LDH	1 M KOH + 0.33 M urea	1.38 V@10 mA cm ⁻²	This work
		1.44 V@50 mA cm ⁻²	
Co ₃ S ₄ nanowires/NF	1 M KOH + 0.33 M urea	1.54 V@50 mA cm ⁻²	11
Ni ₂ P/CFC	1 M KOH + 0.33 M urea	1.42 V@10 mA cm ⁻²	12
Fe-Ni ₃ S ₂ @FeNi ₃ -8	1 M KOH + 0.33 M urea	1.40 V@10 mA cm ⁻²	13
Fe ₃ O ₄ -NiO/NF	1 M KOH + 0.33 M urea	1.44 V@10 mA cm ⁻²	14
NiMo@ZnO/NF	1 M KOH + 0.33 M urea	1.405 V@10 mA cm ⁻²	15
NiF ₃ /Ni ₂ P@CC-2	1 M KOH + 0.33 M urea	1.36 V@10 mA cm ⁻²	16
V ₈ C ₇ /CoP-0.11	1 M KOH + 0.33 M urea	1.40 V@10 mA cm ⁻²	17
CoFe LDH/MOF-0.06	1 M KOH + 0.33 M urea	1.45 V@10 mA cm ⁻²	18
Ni@NCNT-3	1 M KOH + 0.5 M urea	1.38 V@10 mA cm ⁻²	19
Ni-MOF-0.5	1 M KOH + 0.5 M urea	1.38 V@10 mA cm ⁻²	20

References

- 1. A. C. Thenuwara, N. H. Attanayake, J. Yu, J. P. Perdew, E. J. Elzinga, Q. Yan and D. R. Strongin, *The Journal of Physical Chemistry B*, 2017, **122**, 847-854.
- Y. Wang, H. Yuan, F. Liu and T. Hu, Journal of Materials Chemistry A, 2021, 9, 7114-7121.
- S. Wang, H. Wang, C. Huang, P. Ye, X. Luo, J. Ning, Y. Zhong and Y. Hu, *Applied Catalysis B: Environmental*, 2021, 298.
- X. Han, Y. Niu, C. Yu, Z. Liu, H. Huang, H. Huang, S. Li, W. Guo, X. Tan and J. Qiu, *Nano Energy*, 2020, 69.
- 5. J. Wang, G. Lv and C. Wang, *Applied Surface Science*, 2021, 570.
- D. Duan, D. Guo, J. Gao, S. Liu and Y. Wang, J Colloid Interf Sci, 2022, 622, 250-260.
- H. H. Zhong, T. Y. Liu, S. W. Zhang, D. Li, P. Tang, N. Alonso-Vante and Y. Feng, Journal of Energy Chemistry, 2019, 33, 130-137.
- W. Wang, Y. Lu, M. Zhao, R. Luo, Y. Yang, T. Peng, H. Yan, X. Liu and Y. Luo, ACS Nano, 2019, 13, 12206-12218.
- L. Wu, J. Zhang, S. Wang, Q. Jiang, R. Feng, S. Ju, W. Zhang and F. Song, Chemical Engineering Journal, 2022, 442.
- L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang and Y. Li, Small, 2019, 15.
- 11. J. Wu, J. Fan, S. Li, K. Cui, J. Wu, H.-G. Jin, W. Luo and Z. Chao, *Materials Science and Engineering: B*, 2022, **278**.
- 12. X. Zhang, Y. Y. Liu, Q. Z. Xiong, G. Liu, C. Zhao, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Electrochimica Acta*, 2017, **254**, 44-49.
- W. X. Zhang, Q. Jia, H. Liang, L. Cui, D. Wei and J. Q. Liu, *Chemical Engineering Journal*, 2020, **396**, 125315.
- 14. M. Han and G. Yan, *Chemical Papers*, 2020, **74**, 4473-4480.
- J. Cao, H. Li, R. Zhu, L. Ma, K. Zhou, Q. Wei and F. Luo, *Journal of Alloys and Compounds*, 2020, 844.
- K. Wang, W. Huang, Q. Cao, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu and P. Gao, Chemical Engineering Journal, 2022, 427.
- 17. L. Wu, M. Zhang, Z. Wen and S. Ci, *Chemical Engineering Journal*, 2020, 399.
- S. Huang, Y. Wu, J. Fu, P. Xin, Q. Zhang, Z. Jin, J. Zhang, Z. Hu and Z. Chen, Nanotechnology, 2021, 32.
- Q. Zhang, F. M. D. Kazim, S. Ma, K. Qu, M. Li, Y. Wang, H. Hu, W. Cai and Z. Yang, *Applied Catalysis B: Environmental*, 2021, 280.
- S. Zheng, Y. Zheng, H. Xue and H. Pang, *Chemical Engineering Journal*, 2020, 395.