Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Effects of non-metals doping on oxygen reduction reaction of Fe-C₂N

electrodes

Dan Shu, ^a Dan Wang, ^{*b} and Yan Wang ^{*c}

^a School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.

^b College of Science, Central South University of Forestry and Technology, Changsha 410004, China. E-mail: <u>wangdan@hnu.edu.cn</u>

^c School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China. E-mail: <u>ywang8@hnust.edu.cn</u> In electrochemistry, the basic reaction steps of four electrons under acidic conditions can be expressed as follows:

*
$$+ O_2 + H^+ + e^- \rightarrow * OOH\#(1)$$

* $OOH + H^+ + e^- \rightarrow * O + H_2O\#(2)$
* $O + H^+ + e^- \rightarrow * OH\#(3)$
* $OH + H^+ + e^- \rightarrow H_2O\#(4)$

Where * represents the active site of O containing intermediates (* O, * OH and * OOH) on the material surface. The Gibbs free energy of O-containing intermediates involved in ORR is calculated as follows:

$$\Delta G_{*0_{x}H_{y}} = G_{*0_{x}H_{y}-M} - G_{M} - [xG_{H_{2}0} - (2x - y)G_{H_{2}}/2] \#(5)$$
Where $G_{*0_{x}H_{y}-M}, G_{M}, G_{H_{2}0}$ and $G_{H_{2}}$ represent the total Gibbs free energy, the Gibbs free energy of the substrate, the Gibbs free energy of H₂O and the Gibbs free energy of H₂. The change in Gibbs free energy of the ORR step can be calculated as:

$$\Delta G_{1} = \Delta G_{*00H} - 4.92 \#(6)$$

$$\Delta G_{2} = \Delta G_{*0} - \Delta G_{*00H} \#(7)$$

$$\Delta G_{3} = \Delta G_{*0H} - \Delta G_{*0} \#(8)$$

$$\Delta G_{4} = -\Delta G_{*0H} \#(9)$$

Figure S1. The ELF plot of Fe-C₂N (a); FeB-C₂N (b); FeN-C₂N (c) and FeP-C₂N (d).

Figure S2. Griffith and Pauli adsorption configurations of O₂.

Figure S3. Charge density difference for O₂ adsorption states and corresponding Bader charge transfer number on FeB-C₂N. Color code: yellow stands for electron accumulation and cyan stands for electron depletion.

Figure S4. The free energy diagram of the ORR of the adjacent (a) and symmetric (b) sites of Fe- C_2N under different potentials in vacuum. Red solid line represents the PDS.

	Fe-C ₂ N	FeB-C ₂ N	FeC-C ₂ N	FeN-C ₂ N	FeP-C ₂ N
η_{ORR} (V)	1.38	3.05	0.87	2.47	1.24

Table S1. Overpotential of materials with different doping.

Table S2. The adsorption energy of different materials for * OH.

	Fe-C ₂ N	FeB-C ₂ N	FeC-C ₂ N	FeN-C ₂ N	FeP-C ₂ N
E_{ads} (eV)	-11.26	-10.77	-10.74	-12.33	-11.09