Tailoring Oxygen Vacancies and Active Surface Oxygen Species inCrOx Hierarchical Strawberry-Type Three-Dimensional (3D)Micro-Spindles Catalysts for Total Catalytic Oxidation of VOCs

Shankha S. Acharyya,*^{a,b,} Swati Rana,^a Sachin K. Sharma,^a Mukesh K. Poddar,^a Vinod Kumar,^c Takehiko Sasaki,^d Shilpi Ghosh,*^{a,b} and Rajaram Bal*^a

- ^c. Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
- ^d Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan

a-Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun- 248005, Uttarakhand, India; E-mail: raja@iip.res.in

^b Research Initiative for Supra-Materials (RISM) Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 380-8553, Japan; E-mail: <u>acharyya_shankha@shinshu-u.ac.jp</u>; <u>shlpghsh@gmail.com</u>

Entry	Catalyst	Substrate	Catalytic	Ref
			Performance	
1	MCM-48 supported Chromium (Cr/MCM-48)	Trichloroethylene	T _{100:} 350 °C	1
2	3D Mesoporous Chromium oxide, prepared by Neutral Templating Route	Toluene	T ₁₀₀ : 280– 300°C	2
3	0.5% Pt/CrOOH	1,2-Dichloroethane (Flow rate: $46,000 \text{ h}^{-1}$)	T _{90:} 317 °C	3
4	3D Mesoporous chromium oxide prepared by a Neutral Templating Route	Toluene (GHSV = $30,000 h^{-1}$)	T _{90:} 300 °C	4
5	Mesoporous Cr_2O_3 prepared using 3D cubic mesoporous silica: KIT-6 (Hard Template)	Toluene	T ₅₀ : 205 °C	5
6	Mesoporous Cr_2O_3 with ordered 3D hexagonal polycrystalline structures using KIT-6 (Hard Template)	Toluene (Space vel. = 20000 h^{-1})	T ₉₀ : 300 ⁰C	6
7	Chromium-and Copper-modified SBA-15 (Cr ₃ Cu ₇ /SBA-15)	Toluene (WHSV = 1.2 h^{-1})	T ₁₀₀ : 360 °C	7
8	Chromium & Cerium modified USY Zeolite catalysts (Cr ₂ O ₃ -CeO ₂ -USY) prepared by Impregnation Method	Dichloromethane	Т ₉₀ : 281 °С	8
9	Cake-like Cr_2O_3 prepared in Microemulsion Methods	Toluene	T ₉₀ : 240 °C	9
10	γ-Alumina supported Chromium oxide catalysts by Impregnation Method	Benzene	T ₁₀₀ : 350 °C	10
11	CeO_2 - CrO_x oxide prepared using $(NH_4)_2CO_3$ as Precipitant.	Cl-VOC $(CH_2Cl_2 + C_6H_5Cl + C_2H_4Cl_2 + C_2HCl_3)$ GHSV: 9000mLg ⁻¹ h ⁻¹)	T ₉₀ : 295 °C	11
12	Cr/TiO ₂ porous microspheres prepared by hydrothermal method	Chlorobenzene (GHSV 15,000 h ⁻¹)	T ₉₀ : 265.73 °C	12
13	MnOx/Cr ₂ O ₃ composites prepared by Pyrolysis of Cr-MOF precursors (MIL-101-Cr)	Toluene (60,000 mL/gh)	T ₉₀ : 259 °C	13
14	Cr modified ZSM-5 zeolite	Trichloroethylene	Т ₉₀ : 495 °С	14
15	Hierarchical Strawberry-Type Three-Dimensional	Toluene	Т ₉₀ : 270 °С	This
	(3D) CrOx Micro-Spindles			Work

Table S1. Earlier Reports of total oxidation of VOC's over Cr-based catalysts

Fig S1. NH₃-TPD profiles of commercial (a) chromium (VI) oxide, (b) chromium (III) oxide, (c) molybdenum (VI) oxide and (d) tungsten (VI) oxide.

Fig. S2. XRD diffractogram of products (chromium oxide) calcined at (a) 750 °C; (b) 550 °C; (c) 450 °C; (d) 350 °C and (e) 150 °C.

Fig. S3 TEM image of fresh chromium oxide nanoparticles catalyst i.e. $Cr_2O_3^{NIT}$ (a)-(c) with successively higher magnifications and (d) the corresponding SAED diagram.

Fig. S4 HRTEM images and the respective particle size distribution (histogram) of (a) fresh and (b) spent $CrOx^{K-SB}$ and that of (c) fresh and (d) spent $Cr_2O_3^{NIT}$ catalysts.

Fig. S5 SEM images of fresh (a)-(h) at ascending resolutions and (i) that of spent CrOx^{K-SB} catalyst

Fig. S6 SEM images (a,b) and SEM-EDX mapping of (c) chromium and (d) oxygen in $CrOx^{K-SB}$ catalyst

Fig. S7 SEM images (a-c) of uncalcined CrOx^{K-SB} catalyst and (d) corresponding EDX diagram demonstrating the presence of C and Br as impurities during catalyst synthesis

Fig. S8 (a), (b) SEM and (c) SEM-EDAX image of Cr(III) oxide prepared by heating $(NH_4)_2Cr_2O_7$ and (d), (e) SEM and (f) SEM-EDAX image of CTAB-promoted Cr(III) oxide nanoparticles i.e. $Cr_2O_3^{NIT}$ prepared by using Cr $(NO_3)_3$. 9H₂O.

Fig. S9 O₂-TPD plots of (a) CrO_x^{K-SB} , (b) Chromium oxide prepared using (chromic acid + NH₄OH) mixture, followed by drying (CrO_x^{AH}) (c) chromium oxide generated heating ammonium dichromate, (d) commercial Cr(VI) oxide, (d) $Cr_2O_3^{NIT}$ and (e) commercial Cr_2O_3

References

- 1. S. Kawi and M. Te, Catal. Today, 1998, 44, 101.
- 2. A. K. Sinha and K. Suzuki, Angew. Chem., 2005, 44, 271.
- 3. H. Rotter, M. V. Landau and M. Herskowitz, Environ. Sci. Technol., 2005, 39, 6845.
- 4. A. K. Sinha and K. Suzuki, Appl. Catal. B, 2007, 70, 417.
- Y. Wang, X. Yuan, X. Liu, J. Ren, W. Tong, Y. Wang and G. Lu, *Solid State Sci.*, 2008, 10, 1117.
- Y. S. Xia, H. X.Dai, H. Y.Jiang, J. G.Deng, H. He and C. T. Au, *Environ. Sci. Technol.* 2009, 43, 8355.
- M. Popova, Á. Szegedi, Z. Cherkezova-Zheleva, A. Dimitrova and I. Mitov, *Appl. Catal. A*, 2010, 381, 26–35.
- 8. Q. Q. Huang, Z. H. Meng and R. X. Zhou, Appl. Catal. B, 2012, 115–116, 179.
- 9. G. Bai, H. Dai, Y. Liu, K. Ji, X. Li and S. Xie, Catal. Commun., 2013, 36, 43
- 10. T. Xing, H. Wana, Y. Shao, Y. Hana, Z. Xu and S. Zheng, Appl. Catal. A, 2013, 468, 269.
- 11. P. Yang, Z. Shi, S. Yang and R. Zhou, Chem. Eng. Sci., 2015, 126, 361-369
- 12. Y. Jiao, X. Chen, F. He and S. Liu, Chem. Eng. J., 2019, 372, 107.
- 13. X. Chen, X. Chen, S. Cai, E. Yu, J. Chen and H. Jia, Appl. Surf. Sci., 2019, 475, 312.
- 14. Y. Zhang, H. Zhang and Y. Yan, Sep. Purif. Technol., 2020, 251, 116827