Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

Interaction of Plant Alkaloid Berberine with β-Lactoglobulin: An Account from Spectroscopic, Thermodynamic and Small-angle X-ray Scattering Studies Aided by Theoretical Calculations

Saumen Saha^{1,2}, Snehasish Bhattacharjee¹, Joydeep Chowdhury¹*

¹Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata-700032, India

Corresponding Author: * E-mail: joydeep.chowdhury@jadavpuruniversity.in, joydeep72_c@rediffmail.com

Present address^{: 2}Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India

Figure S1: Scatchard plot: Variation of [PL]/[L] as a function of [PL] for the binding of BER with β -LG.

Figure S2: Benesi-Hildebrand (B–H) plot of 1/[F0 – F] as a function of 1/[BER]. Inset shows the modified B-H plot of 1/[F0 – F] vs $1/[BER]^2$ for the binding interaction between β -LG and BER.

Figure S3: Variation of [(F0 - F)/F] as a function of [BER] for the binding of BER with β -LG.

Figure S4. MRE value of β -LG [5 μ M] in absence (Black) and in the presence of 15 μ M (Red) and 30 μ M (Blue) BER.

Table S1. Percentages of the secondary structural components of β -LG in absence and in the presence of BER of varied concentrations

BER Concentration (µM)	% of α–helix	% of β–sheet	% of random coil
0 (pure β-LG)	14.4	45.5	40.1
15	15.4	43.8	40.8
30	15.8	42.7	41.5