Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Material (ESI) for

Supporting Information for

Ruthenium/HI-catalyzed direct hydromethylation of indoles and

quinolines in DME

Pengxiang Gao, ^a Zheng Wang,^b Ruotong Chang,^a Wei Li,^a Ziwei Zhao,^a Dexin Fu,^a and Qingbin Liu,^a*

^a Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China

^b College of Science, Hebei Agricultural University, Baoding 071001, China.

*Corresponding Authors: liuqingbin@hebtu.edu.cn.

Table of contents

1	General information	S2
2	Experimental section	S5
3	¹ H NMR, ¹³ C NMR and MS for the organic products	S 6
4	References	S59

1. General information

All manipulations involving organophosphines and their ruthenium complexes were carried out under a nitrogen atmosphere using standard Schlenk techniques. All solvents were dried and distilled under nitrogen prior to use. ¹H, ¹³C NMR spectra were recorded on a Bruker AVIII - 500 NMR spectrometer. GC analyses were performed using an Agilent 6820 system (FID) and HP-5 column: with the injector temperature of 300 °C and detector temperature of 300 °C, column temperature 40 °C, withdraw time 2 min, then 20 °C/min to 230 °C keeping for 5 min., then 20 °C/min to 300 °C, withdraw time for 5min., using mesitylene as the internal standard. GC-MS was carried out on DSQII, column: HP-5MS, procedures: Injector Temp:300 °C; Detector Temp:300 °C; column temperature 40 °C, withdraw time 2 min, then 20 °C/ min to 230 °C keeping for 5 min, then 20 °C/min to 300 °C withdraw time for 5 min. Indoles and quinolines are purchased from Innochem Science & Technology Co., LTD and used without further purification. Hydrogen gas (99.99%) was purchased from Shijiazhuang Xisanjiao. All solvents were dried and distilled under nitrogen prior to use. Complex Ru1 was synthesized and characterized according to the procedure reported by ourselves.^{1,2}

CAS number	Product	CAS number
	1-methylindoline	824-21-5
120-72-9	indoleline	496-15-1
	1-methylindole	603-76-9
3420-02-8	1,6-dimethylindoline	1384080-58-3
5120 02 0	1,6-dimethyl-1H-indole	5621-15-8
614-96-0	1,5-dimethylindoline	1503436-23-4
011 20 0	1,5-dimethyl-1H-indole	27816-53-1
e 16096-32-5	1,4-dimethylindoline	1856504-77-2
	1,4-dimethylindole	27816-52-0
	CAS number 120-72-9 3420-02-8 614-96-0 16096-32-5	CAS numberProduct120-72-91-methylindoline120-72-9indoleline1-methylindole1-methylindole3420-02-81,6-dimethylindoline1,6-dimethyl-1H-indole1,6-dimethyl-1H-indole614-96-01,5-dimethylindoline1,5-dimethyl-1H-indole1,5-dimethyl-1H-indole16096-32-51,4-dimethylindoline1,4-dimethylindole1,4-dimethylindoline

Table S1	CAS	numbers	for	substrates
----------	-----	---------	-----	------------

	2100 12 7	6-methoxy-1-methyl-indoline	7556-48-1
6-methoxyindole	3189-13-7	6-methoxy-1-methyl-1H-indole	1968-17-8
e	1006.04.6	5-methoxy-1-methyl-indoline	74492-43-6
5-methoxyindole	1006-94-6	5-methoxy-N-methylindole	2521-13-3
		4-methoxy-1-methyl-indoline	7569-83-7
4-methoxyindole	4837-90-5	4-methoxy-1-methyl-1H-indole	7556-35-6
		4-methoxy-1H-indole	4837-90-5
		6-fluoro-1-methylindoline	1849248-48-1
6-fluoroindole	399-51-9	6-fluoro-1-methyl-1H-indole	441715-92-0
		6-fluoro-1H-indole	399-51-9
		5-fluoro-1-methylindoline	388078-34-0
5-fluoroindole	399-52-0	1,5-dimethyl-1H-indole	27816-53-1
4-fluoroindole	387-42-9	4-fluoro-1-methylindoline	1851835-07-8
T muoronnuoro	507 12 9	4-fluoro-1-methyl-1H-indole	441715-34-0
		6-chloro-1-methylindoline	99846-63-6
6-chloroindole	17422-33-2	6-chloro-1-methyl-1H-indole	155868-51-2
4-chloroindole	25235-85-2	4-chloro-1-methylindoline	99848-88-1
		4-chloro-1-methyl-1H-indole	77801-91-3
quinoline	91-22-5	N-methyl-1,2,3,4-tetrahydroquinoline	491-34-9
8-methylauinoline	611-32-5	1,8-dimethyl-1,2,3,4-tetrahydroquinoline	84573-84-2
•	011 02 0	8-methyl-1,2,3,4-tetrahydroquinoline	52601-70-4
7-methylquinoline	612-60-2	1,7-dimethyl-1,2,3,4-tetrahydroquinoline	91245-78-2
6-methylquinoline	91-62-3	1,6-dimethyl-1,2,3,4-tetrahydroquinoline	104524-39-2

5-methylquinoline	7661-55-4	1,5-dimethyl-1,2,3,4-tetrahydroquinoline 5-methyl-1,2,3,4-tetrahydroquinoline	1864825-92-2 58960-02-4
6-methyoxyquinoline	5263-87-6	1-methyl-6-methoxy-1,2,3,4- tetrahydroquinoline 6-methoxy-1,2,3,4-tetrahydroquinoline	74492-61-8 120-15-0
5-methyoxyquinoline	6931-19-7	1-methyl-5-methoxy-1,2,3,4- tetrahydroquinoline	1880957-62-9
8-fluoroquinoline	394-68-3	8-fluoro-1-methyl-1,2,3,4- tetrahydroquinolin 8-fluoro-1,2,3,4-tetrahydroquinoline	1862849-43-1 75414-02-7
6-fluoroquinoline	396-30-5	6-fluoro-1-methyl-1,2,3,4- tetrahydroquinolin	388078-35-1

2. Experimental section

2.1 General procedure of hydromethylation

Under an atmosphere of nitrogen, a stainless steel 100 mL autoclave, equipped with a magnetic stir bar, was charged with **Ru1** (0.001 ~ 0.005 mmol) and the solvents to be used ($2.5 \sim 10$ mL). A solution of the substrates (0.5 mmol) in the solvent was added *via* a syringe. The autoclave was purged by three cycles of pressurization, venting with N₂ ($1 \sim 5$ bar), and then pressurized with the desired pressure ($40 \sim 80$ bar). The autoclave was heated to the desired temperature ($80 \sim 140$ °C) and the contents stirred. After the pre-determined reaction time, the autoclave was cooled to room temperature and the pressure slowly released. The reaction mixture was filtered through a plug of silica gel and then analyzed by GC and GC-MS. The mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 80:1-20:1) to afford the hydromethylation products and detected by NMR.

2.2 Optimizing reaction conditions

 Table S2 The dosage of hydroiodic acid for hydromethylation of indole (a1) to 1

 methylindoline (b1)^a

		∣, 80 bar H _{2.} additi 20 °C, 36h, DME		H ₃ + (H +	CH ₃	
	a1		b1		I Ĩ	I	
Entry	HI (X mmol)	Conv. (%)	Yield of	b1	Vield of I (%)	Yield of	Π
			(%)		1 for 0 f (70)	(%)	
1	0.50	96.9	81.4		0	15.5	
2	0.75	65.8	56.6		0	9.2	
3	0.25	96.8	78.0		0	18.8	
4	0.20	97.0	76.1		0	20.9	
5	0.15	83.5	71.5		0	12.0	
6	0.10	79.2	68.0		0	11.2	
7	0.05	65.9	55.1		5.0	5.8	

Conditions: Indole (0.5 mmol), **Ru1** (10 mol%), DME (10 mL), P (H₂) = 80 bar, Temp. = 120 °C, Time = 36 h. All yields are determined by GC using mesitylene as the internal standard.

Table S3 Temperature screening^a

	HN a1	Ru1 , 80 bar H ₂ 40 mol% HI, DME 80 - 140 °C, 24-36	h $b1$	CH₃ → + [CH₃ N II	
Entry	Tem. (°C)	Conv. (%)	Yield of	b1	Vield of I (%)	Yield of	II
			(%)			(%)	
1	80	39.3	36.4		0	2.9	
2	100	58.7	54.3		0	4.4	
3	120	97.0	76.1		0	20.9	
4	140	96.4	73.6		3.0	19.8	

Conditions: Indole (0.5 mmol), **Ru1** (1 mol%), DME (10 mL), P (H₂) = 80 bar, Temp. = 120 °C, Time = 36 h. All yields are determined by GC using mesitylene as the internal standard.

3. ¹H NMR, ¹³C NMR and MS for the organic products

Entry	Substrate	NMR and MS	Reference
1		 ¹H NMR (500 MHz, DMSO-<i>d</i>₆) δ 7.06 – 6.97 (m, 2H), 6.59 (t, 1H), 6.49 (d, 1H), 3.22 (t, 2H), 2.85 (t, 2H), 2.68 (s, 3H). ¹³C NMR (125 MHz, DMSO-<i>d</i>₆) δ 153.8, 130.2, 127.5, 124.4, 117.7, 107.4, 56.0, 36.3, 28.6. MS: <i>m/z</i> [M]⁺, 133.06 	3
2		 ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.68 (m, 1H), 7.42 (d, 1H), 7.39 – 7.28 (m, 1H), 7.26 – 7.16 (m, 1H), 7.13 (d, 1H), 6.59 (d, 1H), 3.86 (d, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.8, 128.9, 128.6, 121.6, 121.0, 119.4, 109.3, 101.0, 32.9. MS: <i>m/z</i> [M]⁺, 131.04 	4
3	HN HN	 ¹H NMR (400 MHz, CDCl₃): δ7.19 (d, 1H), 7.08 (t, 1H), 6.82 - 6.67 (m, 2H), 3.61 (t, 2H), 3.09 (t, 2H). ¹³C NMR (101 MHz, CDCl₃): δ151.5, 129.5, 127.3, 124.7, 118.9, 109.7, 47.4, 29.9. MS: <i>m/z</i> [M]⁺, 119.03 	3
4		¹ H NMR (400 MHz, CDCl ₃) δ 7.01 (d, 1H), 6.54 (d, 1H), 6.37 (s, 1H), 3.32 (t, 2H), 2.93 (t, 2H), 2.78 (s, 3H), 2.34 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 147.13	3

Table S4¹H NMR, ¹³C NMR and MS for the organic products

5		¹ H NMR (400 MHz, CDCl ₃) δ 6.98 – 6.89 (m, 2H), 6.45 (d, 1H), 3.28 (t, 2H), 2.96 – 2.91 (m, 2H), 2.76 (s, 3H), 2.28 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 147.12	3
6		¹ H NMR (400 MHz, CDCl ₃) δ 7.05 (t, 1H), 6.56 (d, 1H), 6.39 (d, 1H), 3.35 (t, 2H), 2.91 (t, 2H), 2.79 (s, 3H), 2.26 (s, 3H). MS: <i>m</i> / <i>z</i> [M] ⁺ , 147.13	3
7	MeO /	 ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, 1H), 6.23 (d, 1H), 6.12 (d, 1H), 3.82 (s, 3H), 3.35 (t, 2H), 2.92 (t, 2H), 2.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 154.8, 124.3, 122.7, 101.63, 94.9, 55.7, 55.5, 36.1, 28.0 MS: <i>m/z</i> [M]⁺, 161.10 	
8	MeO /	¹ H NMR (400 MHz, CDCl ₃) δ 6.78 (t, 1H), 6.69 (d, 1H), 6.47 (d, 1H), 3.78 (s, 3H), 3.27 (t, 2H), 2.97 – 2.91 (m, 2H), 2.75 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 163.12	5
9		 ¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, 1H), 6.34 (d, 1H), 6.24 (d, 1H), 3.86 (s, 3H), 3.35 (t, 2H), 2.95 (t, 2H), 2.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 155.2, 128.8, 102.8, 101.3, 99.2, 56.4, 55.3, 36.5, 25.7. MS: <i>m/z</i> [M]⁺, 163.13 	
10	F N	¹ H NMR (400 MHz, CDCl ₃) δ 7.02 – 6.94 (m, 1H), 6.34 (d, 1H), 6.19 (d, 1H), 3.39 (t, 2H), 2.94 (t, 2H), 2.78 (s, 3H), 1.61 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 151.08	6
11	F	¹ H NMR (400 MHz, CDCl ₃) δ 6.90 – 6.74 (m, 2H), 6.40 (d, 1H), 3.31 (t, 2H), 2.98 – 2.92 (m, 2H), 2.76 (s, 3H). MS: <i>m</i> / <i>z</i> [M] ⁺ , 151.11	3
12	F N	¹ H NMR (400 MHz, CDCl ₃) δ 7.06 (t, 1H), 6.40 (t, 1H), 6.28 (d, 1H), 3.40 (t, 2H), 3.02 (t, 2H), 2.79 (d, 3H). MS: <i>m/z</i> [M] ⁺ , 151.10	7
13		¹ H NMR (400 MHz, CDCl ₃) δ 7.04 – 6.94 (m, 1H), 6.34 (d, 1H), 6.19 (d, 1H), 3.39 (t, 2H), 2.93 (t, 2H), 2.77 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 167.06	3

14		¹ H NMR (400 MHz, CDCl ₃) δ 7.03 (t, 1H), 6.66 (d, 1H), 6.36 (d, 1H), 3.45 – 3.35 (m, 2H), 3.03 (t, 2H), 2.79 (s, 3H). MS: <i>m/z</i> [M] ⁺ , 167.07	7
15		¹ H NMR (400 MHz, CDCl ₃) δ 7.15 – 7.06 (m, 1H), 7.02 – 6.95 (m, 1H), 6.64 (t, 2H), 3.29 – 3.21 (m, 2H), 2.92 (s, 3H), 2.80 (t, 2H), 2.07 – 1.97 (m, 2H) ¹³ C NMR (101 MHz, CDCl ₃) δ 147.6, 128.9, 127.1, 122.9, 116.2, 111.0, 51.3, 39.2, 27.8, 22.5. MS: <i>m/z</i> [M] ⁺ , 147.12	3
16		¹ H NMR (400 MHz, CDCl ₃) δ 6.92 (d, 1H), 6.86 – 6.80 (m, 1H), 6.58 (d, 1H), 3.24 – 3.16 (m, 2H), 2.89 (s, 3H), 2.78 (t, 2H), 2.25 (s, 3H), 2.08 – 1.95 (m, 2H). MS: <i>m/z</i> [M] ⁺ , 161.07	8
17		 ¹H NMR (400 MHz, CDCl₃) δ 6.91 (d, 1H), 6.50 (d, 2H), 3.29 - 3.22 (m, 2H), 2.94 (d, 3H), 2.79 (t, 2H), 2.34 (s, 3H), 2.03 (q, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 136.6, 128.8, 120.0, 117.1, 111.9, 51.5, 39.2, 27.5, 22.7, 21.7. MS: <i>m/z</i> [M]⁺, 161.09 	3
18		 ¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, 1H), 6.84 (d, 1H), 6.58 (d, 1H), 3.24 – 3.17 (m, 2H), 2.90 (s, 3H), 2.79 (t, 2H), 2.26 (s, 3H), 2.08 – 1.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 129.7, 127.5, 125.6, 123.2, 111.5, 51.6, 39.5, 27.8, 22.7, 20.3. MS: <i>m/z</i> [M]⁺, 161.10 	3
19		¹ H NMR (400 MHz, CDCl ₃) δ 7.09 (t, 1H), 6.62 (t, 2H), 3.36 – 3.16 (m, 2H), 2.97 (d, 3H), 2.75 (t, 2H), 2.29 (s, 3H), 2.12 (m,2H). MS: <i>m</i> / <i>z</i> [M] ⁺ , 161.10	7
20	MeO	¹ H NMR (400 MHz, CDCl ₃) δ 6.72 (d, 1H), 6.66 – 6.59 (m, 2H), 3.78 (d, 3H), 3.20 – 3.13 (m, 2H), 2.88 (d, 3H), 2.81 (t, 2H) ¹³ C NMR (101 MHz, CDCl ₃) δ 151.4, 141.7, 124.7, 115.1, 112.6, 112.3, 55.8, 51.7, 40.0, 28.0, 22.7. MS: <i>m/z</i> [M] ⁺ , 177.09	3
21	OMe	 ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, 1H), 6.37 (d, 1H), 6.32 (d, 1H), 3.84 (s, 3H), 3.24 - 3.17 (m, 2H), 2.93 (s, 3H), 2.72 (t, 2H), 2.06 - 1.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 148.0, 126.8, 110.9, 104.9, 99.2, 55.4, 51.1, 39.9, 22.0, 21.1. MS: <i>m/z</i> [M]⁺, 177.08 	

		¹ H NMR (400 MHz, CDCl ₃) δ 6.94 – 6.50 (m, 3H), 3.21 –	
	Ę į	3.12 (m, 2H), 3.06 - 2.92 (m, 3H), 2.78 (t, 2H), 1.98 -	
22		1.87 (m, 2H).	
		¹³ C NMR (101 MHz, CDCl ₃) δ 155.4, 136.1, 129.3, 124.7,	
		119.0, 114.0, 52.8, 42.7, 28.1, 20.2.	
		MS: <i>m</i> / <i>z</i> [M] ⁺ , 165.06	
		¹ H NMR (400 MHz, CDCl ₃) δ 6.81 (m, 1H), 6.74 (m, 1H),	
		6.55 (m, 1H), 3.20 (t, 2H), 2.89 (s, 3H), 2.79 (t, 2H), 2.12	
22	Ń	(m, 2H).	2
25		¹³ C NMR (101 MHz, CDCl ₃) δ 153.9, 143.4, 124.6, 115.5,	5
	F	115.2, 113.1, 51.4, 39.7, 27.5, 22.5.	
		MS: <i>m</i> / <i>z</i> [M] ⁺ , 165.05	

All the GC-MS spectra and data of the products were shown as follow:

(1). GC-MS spectrum for substrate: indole

RT: 8.43 - 11.17

Number of detected	peaks: 3
--------------------	----------

Apex RT	Start RT	End RT	Area%Ar	ea Heig	ght %H	eight	
8.97	8.94 9.04	13979299	1.574	8.48 535	575126.85	8	13.05
9.13	9.10 9.48	12142405	586.970	73.69	3179066	20.90′	7 77.44
10.09	10.06	10.36	29378252	0.736	17.83	3901	9590.300 9.51

(2). GC-MS spectrum for substrate: 6-methylindole

Number of detected peaks: 2

Apex RT	Start RT	End RT	Area%A	rea]	Height	%Height	
9.95 9.92	10.19	61511885	54.586	78.55	171	518896.037	87.46
10.77	10.74	11.01	1679851	17.661	21.4	5 24583	518.453 12.54

(3). GC-MS spectrum for substrate: 5-methylindole

Number of detected peaks: 3

Apex RT	Start RT	End RT	Area%Ar	ea Heig	ht %H	eight		
9.90 9.87	10.16	51950221	47.384	70.81	3320317	814.582	78.54	
10.71	10.68	10.94	19736870	93.621	26.90	88446053	9.255	20.92
11.06	11.02	11.24	16819597	8.234	2.29 226	02286.381	0.53	

S14

(4). GC-MS spectrum for substrate: 4-methylindole

10.04	10.01	10.35	827762868.216	74.79	266667968.272	85.76
10.77	10.74	11.11	271504415.203	24.53	42694610.385 13	.73
11.35	11.28	11.45	7558625.043 0.6	58 158224	9.781 0.51	

(5). GC-MS spectrum for substrate: 6-methoxy-1H-indole

RT: 10.97 - 13.56 Number of detected peaks: 2 Apex RT Start RT End RT Area%Area Height %Height 11.45 11.43 11.69 377534738.449 87.00 91727238.713 89.12 12.12 12.09 12.24 56396734.334 13.00 11203060.375 10.88

S17

(7). GC-MS spectrum for substrate: 4-methoxy-1H-indole

RT: 10.37 - 14.00 Number of detected peaks: 4 Apex RT Start RT End RT Area%Area Height %Height 11.23 11.20 11.53 2941429174.550 52.63 1824214091.880 59.04

11.82	11.74	11.87	50885801.751	0.91	9480786.580	0.31
12.05	12.02	12.21	1504997305.836	26.93	856099687.587	27.71
12.25	12.24	12.47	1092068605.082	19.54	400056718.147	12.95

(8). GC-MS spectrum for substrate: 6-fluoroindole

(9). GC-MS spectrum for substrate: 5-fluoroindole

(10). GC-MS spectrum forsubstrate: 4-fluoroindole

(11). GC-MS spectrum forsubstrate: 6-chloroindole

RT: 9.10 - 14.78

Number of detected peaks: 3

Apex RT	Start RT	End RT	Area%Area	Height %H	eight	
11.17	11.13	11.46	483013681.37	3 41.20	129469952.900	58.69
11.78	11.74	11.94	61972590.099	5.29	14741384.664 6.68	
12.25	12.19	12.77	627516143.55	8 53.52	76389930.968 34.6	3

(12). GC-MS spectrum for substrate: 4-chloroindole

(13). GC-MS spectrum for substrate: quinoline

Number of detected peaks: 1

Apex RT	Start RT	End RT	Area%Area	Height	%He	ight	
10.49	10.45	10.64	2288795699.0)69 100.	.00	1479789668.000	100.00

(14). GC-MS spectrum for substrate: 8-methylquinoline

Number of detected peaks: 2

Apex RT	Start RT	End RT	Area%Area	Height	%Height		
10.75	10.72	10.94	335596677.28	45.4	2 1416	519240.733	68.21
11.15	11.12	11.65	403251059.34	7 54.5	8 6600	00258.247 31.7	9

C:\Users\86158... 页\19.11.19左.RAW Injection 1 + c Full ms [28.00-500.00] MS + spectrum 11.15

-1000000-

100 110 m/z (Da)

 Number of detected peaks: 1

 Apex RT Start RT End RT Area%Area Height %Height

 11.33
 11.29
 11.66
 856889489.247
 100.00
 341153616.857
 100.00

S32

S33

m/z (Da)

J.J.J.

so

-1000000

(18). GC-MS spectrum for substrate: 6-methoxyquinoline

Apex RT	Start RT	End RT	Area%Area	Height	%Height		
11.70	11.67	11.85	41830734.869	4.98	7926326.542	3.54	
12.60	12.57	13.12	797333200.03	3 95.0	2 21604763	5.372	96.46

(19). GC-MS spectrum for substrate: 5-methoxyquinoline

(21). GC-MS spectrum for substrate: 6-fluoroquinoline

Apex RT	Start RT	End RT	Area%Area	Height	%Height	
10.54	10.51	10.59	24446000.720	2.16	10054728.511 2.39	
10.63	10.62	11.14	1107132951.5	56 97.8	410433857.654	97.61

(22). GC-MS spectrum for Scheme 4

RT: 7.32 - 14.33

Number of detected peaks: 2

Apex RT	Start RT	End RT	Area%Aı	ea He	eight %	6Height	
9.84 9.79	10.26	56544184	14.181	71.00	16035	3423.235	84.40
10.36	10.34	10.78	23092579	90.529	29.00	29648065	5.246 15.60

All the ¹H NMR and ¹³C NMR spectra and data of the products were shown as follow:

(23) $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum for N-methylindoline

(24) ¹H NMR and ¹³C NMR spectrum for N-methylindole

(25) ¹H NMR and ¹³C NMR spectrum for indoline

(26) ¹H NMR spectrum for 1,6-dimethylindoline

(27) ¹H NMR spectrum for 1,5-dimethylindoline

(28) ¹H NMR spectrum for 1,4-dimethylindoline

(29) ¹H NMR spectrum for 1-Methyl-6-methoxy-indolin

(30) ¹H NMR spectrum for 1-Methyl-5-methoxy-indolin

(31) ¹H NMR and ¹³C NMR spectrum for 1-Methyl-4-methoxy-indolin

(32) ¹H NMR spectrum for 6-fluoro-1-methylindoline

(33) ¹H NMR spectrum for 5-fluoro-1-methylindoline

(35) ¹H NMR spectrum for 6-chloro-1-methylindoline

(36) ¹H NMR spectrum for 4-chloro-1-methylindoline

(37) ¹H NMR and ¹³C NMR spectrum for N-methyl-1,2,3,4-tetrahydroquinoline

(38) ¹H NMR spectrum for 1,8-dimethyl-1,2,3,4-tetrahydroquinoline

(39) ¹H NMR and ¹³C NMR spectrum for 1,7-dimethyl-1,2,3,4-tetrahydroquinoline

(40) ¹H NMR and ¹³C NMR spectrum for 1,6-dimethyl-1,2,3,4-tetrahydroquinoline

(41) ¹H NMR spectrum for 1,5-dimethyl-1,2,3,4-tetrahydroquinoline

quinoline

(43) ¹H NMR and ¹³C NMR spectrum for 5-methoxy-1-methyl-1,2,3,4-tetrahydro quinoline

(44) ¹H NMR and ¹³C NMR spectrum for 8-fluoro-1-methyl-1,2,3,4-tetrahydro quinoline

(45) ¹H NMR and ¹³C NMR spectrum for 6-fluoro-1-methyl-1,2,3,4-tetrahydro

quinoline

4. References

- Z. Wang, Z. Zhao, Y. Li, Y. Zhong, Q. Zhang, Q. Liu, G. A. Solan, Y. Ma and W.-H. Sun, *Chem. Sci.*, 2020, **11**, 6766-6774.
- Y. Liu, Z. Wang, Z. Zhao, P. Gao, N. Ma and Q. Liu, *Mol. Catal.*, 2021, 516. 111953.
- 3. C. Z. Zhou, Y. R. Zhao, F. F. Tan, Y. J. Guo, Y. Li, ChemCatChem, 2021, 22, 4724-4728.
- 4. F.L. Zeng, H. Alper, Org. Lett., 2013, 15, 2034-2037.
- S. Kato, Y. Saga, M. Kojima, H. Fuse, S. Matsunaga, A. Fukatsu, M. Kondo, S. Masaoka, M. Kanai, J. Am. Chem. Soc., 2017, 139, 2204-2207.
- Y. X. Han, S. T. Zhang, J. H. He, Y. T. Zhang, J. Am. Chem. Soc., 2017, 139, 7399-7407.
- 7. W. L. Jia, N. Westerveld, K. M. Wong, T. Morsch, M. Hakkennes, K. Naksomboon, M. Á. Fernández-Ibáñez, Org. Lett. 2019, 21, 9339–9342.
- H. L. Wang, Y. J. Huang, Q. Jiang, X. C. Dai, F. Shi, Chem. Commun., 2019, 55, 3915-3918.