Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Synthesis of porphyrin and calixarene-based porous organic polymers for the superfast adsorption of bisphenol A and cationic herbicides

Xinyu Zhou, Jia Huang, Weifeng Lv, Lu Han, Shiyuan Zhou, Yingjie Liu, Peiyang Gu

¹State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum

Exploration and Development, CNPC, Beijing 100083, China;

²Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of

Petrochemical Engineering, Changzhou University, Changzhou 213164, China. E-

mail: <u>Shiyuanzhou@cczu.edu.cn; liuyj@cczu.edu.cn; gupeiyang0714@cczu.edu.cn</u>

Experimental Section:

Characterization:

The FT-IR spectrum was performed on a Fourier transform infrared (FT-IR) spectrophotometer (Thermo Scientific Co., United States, Nicolet 6700) and the samples were prepared using a KBr pellet. The solid-state ¹³C NMR was measured on a Bruker INOVA 400 MHz NMR spectrometer. The N₂ adsorption-desorption isotherms were performed on a Quantachorme Micromeritics ASAP 2020 instrument at 77 K to measure the Brunauer-Emmett-Teller (BET) surface areas of the samples. The powder X-ray diffraction (PXRD) of the samples was performed on an X'Pert-Pro MPD analyzer. The surface morphology of the samples is observed by the Scanning Electron Microscope (SEM, Merlin Compact, Japan) and the Transmission Electron Microscopy (TEM, FEI-Tecnai G2 F20, USA). The thermal stability of the samples is tested by thermogravimetric analysis (TGA, TG209F3, Germany) in the range of 30-700 °C with a heating rate of 10 °C min⁻¹.

Equations:

The adsorption kinetics were analyzed *via* the pseudo-first-order and pseudosecond-order kinetic models[1].

The pseudo-first-order kinetic model is:

$$\ln \left(\mathbf{Q}_{e} - \mathbf{Q}_{t} \right) = \ln \mathbf{Q}_{e} - \mathbf{k}_{1} t$$
(S1)

The pseudo-second-order kinetic model is:

$$\frac{t}{Q_{t}} = \frac{1}{k_{2}Q_{e}^{2}} + \frac{t}{Q_{e}}$$
(S2)

Where $Q_e \text{ (mg g}^{-1)}$ is the adsorption capacity in equilibrium; $Q_t \text{ (mg g}^{-1)}$ is the adsorption capacity in t (min); $k_1 \text{ (min}^{-1)}$ and $k_2 \text{ (g mg}^{-1} \text{ min}^{-1)}$ are the constants of pseudo-first-order and pseudo-second-order models, respectively.

The adsorption capacity in equilibrium (Q_e , mg g⁻¹) is calculated according to the following equation:

$$Q_e = \frac{C_i - C_e}{m} V$$
(S3)

Where C_i and C_e (mg L⁻¹) are the initial and final concentrations of targeted pollutants, m (g) is the weight of the adsorbents, and V (L) is the volume of the targeted pollutants solutions.

Two adsorption isothermal models including the Freundlich model and the Langmuir model are adopted to fit the adsorption isotherms data[2].

The Freundlich model is:

$$\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e$$
(S4)

The Langmuir model is:

$$\frac{C_{\rm e}}{Q_{\rm e}} = \frac{C_{\rm e}}{Q_{\rm m}} + \frac{1}{K_{\rm L}Q_{\rm m}} \tag{S5}$$

Where K_F and K_L are the constants of Freundlich and Langmuir models, respectively; 1/n is an empirical parameter of the Freundlich model; C_e (mg g⁻¹) is the concentration of pollutants in equilibrium.

The corresponding parameters are calculated according to the following equations[3]:

$$\mathbf{K}^{0} = \frac{Q_{e}}{C_{e}} \times \mathbf{c}^{0} \times \mathbf{M}_{A}$$
^(S6)

$$\Delta G = -RT \ln K^0 \tag{S7}$$

$$\ln K^0 = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$
^(S8)

$$\Delta G = \Delta H - T \Delta S \tag{S9}$$

where K^0 is the thermodynamic distribution coefficient, c^0 (1 mol L⁻¹) is the standard concentration unit, and M_A (g mol⁻¹) is the molecular weights of the pollutants. ΔG (kJ mol⁻¹), ΔS (J mol⁻¹ K⁻¹), and ΔH (kJ mol⁻¹) are the standard Gibbs free energy, entropy, and enthalpy changes, respectively. Moreover, T is the temperature and R (8.314 J mol⁻¹ K⁻¹) is the universal gas constant.

Fig. S1 The chemical structures of the target pollutants in this work.

Fig. S2 The (a) TGA and (b) XRD curves of POP-Por and POP-SO₃⁻.

Fig. S3 The (a, b) SEM images and (c, d) TEM images of POP-Por and POP-SO₃⁻.

Fig. S4 The changes of UV-vis spectra of (a, b) paraquat with the addition of POP-SO₃-50% and POP-SO₃-10%; (c, d) diquat with the addition of POP-SO₃-50% (50% dosage of chlorosulfonic acid) and POP-SO₃-10% (10% dosage of chlorosulfonic acid).

Fig. S5 (a) The zeta potentials of POP-SO₃⁻ before and after the adsorption of paraquat under neutral conditions. Sample 1: POP-SO₃⁻ itself; sample 2: POP-SO₃⁻ after adsorption of paraquat (50 ppm); sample 3: POP-SO₃⁻ after adsorption of paraquat (100 ppm); (b, c, d) the corresponding primary data.

Fig. S6 The schematic illustration of the binding sites of BPA, paraquat and diquat with POP-Por and POP-SO $_3^-$.

References:

[1] S.P.D. Monte Blanco, F.B. Scheufele, A.N. Módenes, F.R. Espinoza-Quiñones, P. Marin, A.D. Kroumov, C.E. Borba, Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent, Chem. Eng. J., 307 (2017) 466-475.

[2] I.X. Garcia-Zubiri, G. Gonzalez-Gaitano, J.R. Isasi, Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach, J. Colloid Interface Sci., 337 (2009) 11-18.

[3] M. Goswami, P. Phukan, Enhanced adsorption of cationic dyes using sulfonic acid

modified activated carbon, J. Environ. Chem. Eng., 5 (2017) 3508-3517.