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Experimental Section:
Characterization:

The FT-IR spectrum was performed on a Fourier transform infrared (FT-IR)
spectrophotometer (Thermo Scientific Co., United States, Nicolet 6700) and the
samples were prepared using a KBr pellet. The solid-state '*C NMR was measured on
a Bruker INOVA 400 MHz NMR spectrometer. The N, adsorption-desorption
isotherms were performed on a Quantachorme Micromeritics ASAP 2020 instrument
at 77 K to measure the Brunauer-Emmett-Teller (BET) surface areas of the samples.
The powder X-ray diffraction (PXRD) of the samples was performed on an X’Pert-Pro
MPD analyzer. The surface morphology of the samples is observed by the Scanning
Electron Microscope (SEM, Merlin Compact, Japan) and the Transmission Electron
Microscopy (TEM, FEI-Tecnai G2 F20, USA). The thermal stability of the samples is
tested by thermogravimetric analysis (TGA, TG209F3, Germany) in the range of 30-

700 °C with a heating rate of 10 °C min!.
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Equations:

The adsorption kinetics were analyzed via the pseudo-first-order and pseudo-
second-order kinetic models[1].
The pseudo-first-order kinetic model is:
In(Q,-Q)=mnQ, -kt (S1)

The pseudo-second-order kinetic model is:

—— (S2)

Where Q. (mg g!) is the adsorption capacity in equilibrium; Q; (mg g'!) is the
adsorption capacity in t (min); k; (min'') and k, (g mg! min'') are the constants of

pseudo-first-order and pseudo-second-order models, respectively.

The adsorption capacity in equilibrium (Q., mg g!) is calculated according to the

following equation:

G -C,

Q.= \ (S3)
m

Where C; and C. (mg L) are the initial and final concentrations of targeted
pollutants, m (g) is the weight of the adsorbents, and V (L) is the volume of the targeted
pollutants solutions.

Two adsorption isothermal models including the Freundlich model and the
Langmuir model are adopted to fit the adsorption isotherms data[2].

The Freundlich model is:

1
InQ, = InKy+-1InC, (S4)
n

The Langmuir model is:



(S5)

Where Ky and K; are the constants of Freundlich and Langmuir models,
respectively; 1/n is an empirical parameter of the Freundlich model; C, (mg g!) is the
concentration of pollutants in equilibrium.

The corresponding parameters are calculated according to the following

equations[3]:

K'=—xc¢ xM,
Ce (56)
AG= -RT InK’ 57)
, AS AH
InK’ = — - —
R RT 58)
AG = AH - TAS (9)

where KO is the thermodynamic distribution coefficient, ¢® (1 mol L) is the
standard concentration unit, and M4 (g mol™!) is the molecular weights of the pollutants.
AG (kJ mol"), AS (J mol-! K1), and AH (kJ mol') are the standard Gibbs free energy,
entropy, and enthalpy changes, respectively. Moreover, T is the temperature and R

(8.314 J mol-! K-!) is the universal gas constant.
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Fig. S1 The chemical structures of the target pollutants in this work.
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Fig. S2 The (a) TGA and (b) XRD curves of POP-Por and POP-SOs5-.
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Fig. S3 The (a, b) SEM images and (c, d) TEM images of POP-Por and POP-SO5.
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Fig. S4 The changes of UV-vis spectra of (a, b) paraquat with the addition of POP-SOs-
50% and POP-SO5-10%; (c, d) diquat with the addition of POP-SO3-50% (50% dosage

of chlorosulfonic acid) and POP-SO;-10% (10% dosage of chlorosulfonic acid).
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Fig. S5 (a) The zeta potentials of POP-SO;- before and after the adsorption of paraquat
under neutral conditions. Sample 1: POP-SO; itself; sample 2: POP-SO; after
adsorption of paraquat (50 ppm); sample 3: POP-SO; after adsorption of paraquat (100

ppm); (b, c, d) the corresponding primary data.
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Fig. S6 The schematic illustration of the binding sites of BPA, paraquat and diquat with

POP-Por and POP-SO5".
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