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Experimental Section: 

Characterization:

The FT-IR spectrum was performed on a Fourier transform infrared (FT-IR) 

spectrophotometer (Thermo Scientific Co., United States, Nicolet 6700) and the 

samples were prepared using a KBr pellet. The solid-state 13C NMR was measured on 

a Bruker INOVA 400 MHz NMR spectrometer. The N2 adsorption-desorption 

isotherms were performed on a Quantachorme Micromeritics ASAP 2020 instrument 

at 77 K to measure the Brunauer-Emmett-Teller (BET) surface areas of the samples. 

The powder X-ray diffraction (PXRD) of the samples was performed on an X’Pert-Pro 

MPD analyzer. The surface morphology of the samples is observed by the Scanning 

Electron Microscope (SEM, Merlin Compact, Japan) and the Transmission Electron 

Microscopy (TEM, FEI-Tecnai G2 F20, USA). The thermal stability of the samples is 

tested by thermogravimetric analysis (TGA, TG209F3, Germany) in the range of 30-

700 ℃ with a heating rate of 10 ℃ min-1.
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Equations:

The adsorption kinetics were analyzed via the pseudo-first-order and pseudo-

second-order kinetic models[1]. 

The pseudo-first-order kinetic model is:

                         (S1)ln (Qe - Qt) = ln Qe - k1t

The pseudo-second-order kinetic model is:
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Where Qe (mg g-1) is the adsorption capacity in equilibrium; Qt (mg g-1) is the 

adsorption capacity in t (min); k1 (min-1) and k2 (g mg-1 min-1) are the constants of 

pseudo-first-order and pseudo-second-order models, respectively.

The adsorption capacity in equilibrium (Qe, mg g-1) is calculated according to the 

following equation:

        Qe =
Ci - Ce

m
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Where Ci and Ce (mg L-1) are the initial and final concentrations of targeted 

pollutants, m (g) is the weight of the adsorbents, and V (L) is the volume of the targeted 

pollutants solutions.

Two adsorption isothermal models including the Freundlich model and the 

Langmuir model are adopted to fit the adsorption isotherms data[2]. 

The Freundlich model is:
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1
n
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The Langmuir model is:
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Where KF and KL are the constants of Freundlich and Langmuir models, 

respectively; 1/n is an empirical parameter of the Freundlich model; Ce (mg g-1) is the 

concentration of pollutants in equilibrium.

The corresponding parameters are calculated according to the following 

equations[3]:
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where K0 is the thermodynamic distribution coefficient, c0 (1 mol L-1) is the 

standard concentration unit, and MA (g mol-1) is the molecular weights of the pollutants. 

ΔG (kJ mol-1), ΔS (J mol-1 K-1), and ΔH (kJ mol-1) are the standard Gibbs free energy, 

entropy, and enthalpy changes, respectively. Moreover, T is the temperature and R 

(8.314 J mol-1 K-1) is the universal gas constant.

Fig. S1 The chemical structures of the target pollutants in this work.



Fig. S2 The (a) TGA and (b) XRD curves of POP-Por and POP-SO3
-. 

Fig. S3 The (a, b) SEM images and (c, d) TEM images of POP-Por and POP-SO3
-. 



Fig. S4 The changes of UV-vis spectra of (a, b) paraquat with the addition of POP-SO3-

50% and POP-SO3-10%; (c, d) diquat with the addition of POP-SO3-50% (50% dosage 

of chlorosulfonic acid) and POP-SO3-10% (10% dosage of chlorosulfonic acid). 



Fig. S5 (a) The zeta potentials of POP-SO3
- before and after the adsorption of paraquat 

under neutral conditions. Sample 1: POP-SO3
- itself; sample 2: POP-SO3

- after 

adsorption of paraquat (50 ppm); sample 3: POP-SO3
- after adsorption of paraquat (100 

ppm); (b, c, d) the corresponding primary data. 

、

Fig. S6 The schematic illustration of the binding sites of BPA, paraquat and diquat with 

POP-Por and POP-SO3
-.
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