Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1

Supporting Information

A Mild and Efficient Synthesis of Aminofurazans

Aleksei B. Sheremetev,* Andrei S. Kozeev, Nadezhda V. Palysaeva, Kyrill Yu. Suponitsky

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prosp, Moscow 119991. Fax: +7 499 135 5328; e-mail: sab@ioc.ac.ru

Contents

Experimental	2
X-ray study	8
References	12
NMR spectra	13

Experimental

IR spectra were recorded on a Perkin-Elmer Model 577 instrument in KBr pellets. ¹H, ¹³C, and ¹⁵N spectra were acquired on a Bruker AM-300 instrument (300.13, 75.47 and 21.69 MHz, respectively) in CDCl₃ or DMSO- d_6 at 299 K. The chemical shifts of ¹H and ¹³C nuclei were reported relative to TMS, for ¹⁵N – relative to MeNO₂ high-filed chemical shifts are given with a minus sign. Mass-spectra were recorded on a Varian MAT-311A instrument. Elemental analysis was performed on a PerkinElmer 2400 Series II instrument. The reaction progress and purity of the obtained compounds were controlled by TLC on Kieselgel 60 F₂₅₄ plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm). Melting points were determined on Gallenkamp melting point apparatus and they are uncorrected.

General Procedure for the preparation of 3-amino-4-R-furazans from bromomethyl ketones. 1-Bromohexan-2-one (3 g, 16.75 mmol) was dissolved in DMSO (3.6 mL, 3.9 g. 50.3 mmol). Water (5 mL) was added dropwise over 10 min to the solution at room temperature (water bath). Hydroxylamine hydrochloride (6.99 g, 100.56 mmol) was then added and the reaction mixture diluted with ethylene glycol (15 mL). To the stirred slurry sodium hydroxide (5.36 g, 134.1 mmol) was added in small portions over a 15-min period at 20-30°C. During the addition of NaOH, a white precipitate first precipitated out, then the reaction mixture turns pink, and subsequently is divided into 2 layers: red and white (red oil floats on top). After the addition was complete, the mixture was stirred at 20 °C for an additional 10 min. This mixture was then heated at 70°C for 1 h; almost immediately, the color changes from pink to yellow. After the reaction mixture cooled to room temperature, hydroxylamine hydrochloride (3.49 g, 50.28 mmol) was added in one portion, and then NaOH (5.36 g, 134.1 mmol) was added in small portions at 20-30°C (icewater bath). The cooling bath was removed and the mixture stirred for 10 additional minutes at room temperature. Then the mixture was heated so that it boiled after 1 hour. When the temperature reached 60 ° C, urea (2.01 g, 33.52 mmol) was added in one portion. When the reaction mixture boils (~116 °C), it was refluxed for 2 h and then cooled to room temperature. The mixture was stirred at ambient temperature overnight before being diluted with water (200 mL), and extracted with CH_2Cl_2 (4 × 50 mL). The combined organic layers were washed with water (4 × 50 mL), dried with MgSO₄, and concentrated in vacuo, and the residue crystallised.

3-Amino-4-butylfurazan (**6a**). Yield 65%, mp 54-55 °C (from hexane). ¹H NMR (CDCl₃): δ 4.42 (s, 2H), 2.57 (t, 2H, 1.66 (m, 2H), 1.37 (m, 2H), 0.89 (t, 3H); ¹³C NMR (CDCl₃) δ:155.0, 147.7, 28.5, 22.1, 22.0, 13.4; ¹⁵N NMR (DMSO-*d*6): δ 24.7, -18.3, -344.0. IR (KBr, v/cm⁻

¹):3424, 3333, 3211, 2959, 2935, 2872, 1629, 1532, 1455, 1382, 1349, 1266, 1206, 996, 872, 790, 704, 671. Anal. calcd. (%) for C₆H₁₁N₃O (141.17): C 51.05, H 7.85, N 29.77; found: C 51.12, H 7.88, N 29.69.

3-Amino-4-methylfurazan (6b). Yield 67%, mp 72-73°C (from CCl₄), lit^[S1] mp 72.8-73.8°C. All spectroscopic data were in accord with those previously reported.^[S1]

3-Amino-4-ethylfurazan (6c). Yield 73%, mp 71.3-71.6 °C (from hexane), lit^[S1] mp 71.3- NH_2 71.6°C. ¹H NMR (CDCl₃): δ 4.37 (s, 2H), 2.59 (dd, 2H), 1.29 (t, 3H); ¹³C NMR (CDCl₃): δ Ń. 154.7, 148.6, 16.1, 10.8. IR (KBr, v/cm⁻¹): 3408, 3342, 3264, 3227, 2997, 2952, 2890, 2780, 1647, 1601, 1533, 1461, 1449, 1378, 1355, 1216, 1046, 1003, 966, 894, 872. Anal. calcd. (%) for C₄H₇N₃O (113.12): C 42.47, H 6.24, N 37.15; found: C 42.52, H 6.23, N 37.10.

NH₂ **3-Amino-4-propylfurazan (6d)**. Yield (81%), mp 32.2-32-5°C (from hexane), lit^[S1] mp 31.4-Pr 31.9°C. ¹H NMR (CDCl₃): δ4.57 (s, 2H), 2.52 (t, 2H), 1.69 (m, 2H), 0.90 (m, 3H); ¹³C NMR Ń. (CDCl₃) δ: 150.0, 142.5, 19.1, 14.8, 8.3. IR (KBr, v/cm⁻¹): 3453, 3347, 3250, 3219, 2967, 2937, 2877, 1634, 1523, 1463, 1445, 1383, 1260, 1209, 1091, 986, 876, 812. Anal. calcd. (%) for C₅H₉N₃O (127.15): C 47.23, H 7.14, N 33.05; found: C 47.26, H 7.17, N 32.99.

3-Amino-4-cyclopropylfurazan (6f). Yield 70%, mp 55-56 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ 6.14 (s, 2H), 1.89 (m, 1H), 1.02 (m, 2H), 0.85 (m, 2H); ¹³C NMR (DMSO-*d*₆) δ: 156.2, 150.3, 8.1, 8.0, 3.2; ¹⁵N NMR (DMSO-*d*6): δ17.9, -20.8, -338.7. IR (KBr, v/cm⁻¹): 3424, 3334, 3257, 3220, 1639, 1599, 1539, 1440, 1389, 1227, 1178, 1064, 1044, 1029, 985, 891, 865, 832.

Anal. calcd. (%) for C₅H₇N₃O (125.13): C 47.99, H 5.64, N 35.58; found: C 48.07, H 5.68, N 35.53.

3-Amino-4-isobutylfurazan (6g). Yield 61%, mp 84-85 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ 6.01 (s, 2H), 2.48 (s, 2H), 1.96 (m, 1H), 0.90 (d, 6H); ¹³C NMR (DMSO-*d*₆) δ: 156.7, 147.5, 30.7, 26.8, 22.4, 22.3; ¹⁵N NMR (DMSO-*d*₆): δ23.5, -21.5, -338.7. IR (KBr,

v/cm⁻¹): 3412, 3329, 3248, 3212, 2958, 2929, 2872, 1631, 1527, 1468, 1443, 1387, 1369, 1298, 1267, 1218, 1170, 1102, 989, 881. Anal. calcd. (%) for C₆H₁₁N₃O (141.17): C 51.05, H 7.85, N 29.77; found: C 51.11, H 7.87, N 29.73.

3-Amino-4*-tert***-butylfurazan** (6h). Yield 32%, mp 103-104 °C (from petroleum ether), lit^[S1] mp 101-104 °C. All spectroscopic data were in accord with those previously reported.^[S1]

3-Amino-4-pentylfurazan (6i). Yield 47%, mp 58.5-59.0 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ 6.04 (s, 2H), 2.58 (m, 2H), 1.61 (t, 2H), 1.30 (t, 4H), 0.86 (t, 3H); ¹³C NMR (DMSO-*d*₆) δ : 155.9, 147.9, 30.6, 26.0, 21.7, 21.6, 13.7. IR (KBr, v/cm⁻¹): 3419, 3332,

3248, 3212, 2958, 2933, 2862, 1629, 1531, 1459, 1380, 1319, 1256, 1202, 1103, 997, 873, 792. Anal. calcd. (%) for C₇H₁₃N₃O (155.20): C 54.17, H 8.44, N 27.08; found: C 54.21, H 8.46, N 27.00.

3-Amino-4-hexylfurazan (**6j**). Yield 52%, mp 49.5-50 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ 6.00 (s, 2H), 2.58 (m, 2H), 1.59 (m, 2H), 1.26 (m, 6H), 0.83 (s, 3H); ¹³C NMR (DMSO-*d*₆) δ: 155.8, 147.8, 30.8, 28.1, 26.3, 21.9, 21.7, 13.7; ¹⁵N NMR (DMSO-

*d*₆): δ 22.6, -21.3, -338.8. IR (KBr, v/cm⁻¹): 3419, 3332, 3212, 2957, 2931, 2859, 1628, 1531, 1457, 1380, 1298, 1243, 1199, 1105, 981, 916, 873, 791. Anal. calcd. (%) for C₈H₁₅N₃O (169.23): C 56.78, H 8.93, N 24.83; found: C 56.81, H 8.97, N 24.77.

3-Amino-4-heptadecylfurazan (**6k**). Yield 37%, mp 95-97 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ 6.05 (s, 2H), 1.23 (s, 30H), 0.85 (t, 5H); ¹³C NMR (DMSO-*d*₆) δ: 154.7, 147.5, 31.9, 31.5, 30.2, 29.7, 29.7, 29.6, 29.5,

29.4, 29.2, 29.2, 27.1, 26.8, 22.7, 22.7, 14.1; IR (KBr, v/cm⁻¹): 3445, 3340, 3239, 2919, 2850, 1728, 1631, 1534, 1463, 1378, 1292, 1183, 1081, 985, 888, 866, 793. MS (EI), *m/z*: 323 [M]⁺, 306 [M-NH₂]⁺, 293 [M – NO]⁺, 278, 265, 252, 238, 222, 210, 204, 194, 180, 168, 154, 138, 124, 112, 99, 83, 69, 55, 43. Anal. calcd. (%) for $C_{19}H_{37}N_{3}O$ (323.53): C 70.54, H 11.53, N 12.99; found: C 70.61, H 11.58, N 12.93.

3-Amino-4-(adamantan-1-yl)furazan (6l). Yield 21%, mp 158-159 °C (from CCl₄), lit^[S1] mp 158-159°C. All spectroscopic data were in accord with those previously reported.^[S1]

3-(3-Aminofurazan-4-yl)propan-1-ol (6m) Yield 8%, mp 128-130 °C (from CCl₄). ¹H NMR (DMSO-*d*6): δ 6.04 (s, 2H), 4.58 (d, 1H), 3.46 (m, 2H), 2.64 (m, 2H), 1.78 (m, 2H); ¹³C NMR (DMSO-*d*₆) δ:155.9, 148.0, 59.7, 29.5, 18.5; Anal. calcd. (%) for C₅H₉N₃O₂

(143.15): C 41.95, H 6.34, N 29.36; found: C 42.01, H 6.35, N 29.31.

3-(3-Aminofurazan-4-yl)propanoic acid (6n) Yield 11%, mp 135-136 °C (from H₂O). ¹H NMR (DMSO- d_6): δ 11.0 (br.s), 6.11 (br.s, 2H), 2.44 (m, 2H), 2.56 (m, 2H); ¹³C NMR

(DMSO-*d*₆) δ: 171.9, 156.4, 146.9, 29.7, 19.2. IR (KBr, v/cm⁻¹): 3452, 3363, 3177, 3131, 3057, 3001, 2928, 2853, 2781, 1695, 1632, 1544, 1468, 1448, 1353, 1324, 1248, 1196, 1019, 997, 924, 843. Anal. calcd. (%) for C₅H₇N₃O₃ (157.13): C 38.22, H 4.49, N 26.74; found: C 38.30, H 4.52, N 26.71.

3-(3-Aminofurazan-4-yl)acetic acid (60). Yield 63%, mp 91-92 °C (from hexane/ethyl acetate), lit^[S8] mp 89-90°C. All spectroscopic data were in accord with those previously reported.^[S8]

3-Amino-4-phenylfurazan (8a). Yield 67%, mp 100-101 °C (from hexane), lit^[S2] mp 100-101 °C. ¹H NMR (DMSO-*d*₆): δ7.80 (t, 2H), 7.54 (t, 3H), 6.22 (s, 2H); ¹³C NMR (DMSO*d*₆) δ: 155.4, 147.0, 130.3, 129.2, 127.8, 125.7; ¹⁵N NMR (DMSO-*d*₆): δ25.8, -14.6, -337.7;

Anal. calcd. (%) for $C_8H_7N_3O$ (161.16): C 59.62, H 4.38, N 26.07; found: C 59.66, H 4.35, N 26.01.

3-Amino-4-(*o***-tolyl)furazan (8b**). Yield 70%, mp 88-90 °C (from hexane), lit^[S2] mp 88-90 °C. ¹H NMR (CDCl₃): δ = 7.48-7.31 (m, 4H), 4.47 (s, 2H), 2.37 (s, 3H); ¹³C NMR (CDCl₃) δ: 154.8, 146.9, 137.9, 131.1, 130.3, 129.0, 126.2, 124.0, 19.6. Anal. calcd. (%) for C₉H₉N₃O (175.19): C 61.70, H 5.18, N 23.99; found: C 61.77, H 5.21, N 23.92.

3-Amino-4-(*m*-tolyl)furazan (8c). Yield 74%, mp 78-79 °C (from hexane), lit^[S2] mp 78-79 °C. ¹H NMR (CDCl₃): δ 7.52-7.27 (m, 4H), 4.47 (s, 2H), 2.42 (s, 3H).; ¹³C NMR (CDCl₃) δ:154.3, 147.0, 139.3, 131.3, 129.2, 128.2, 125.3, 124.5, 21.3. Anal. calcd. (%) for C₉H₉N₃O (175.19): C 61.70, H 5.18, N 23.99; found: C 61.73, H 5.20, N 23.95.

3-Amino-4-(4-fluorophenyl)furazan (8d). Yield 78%, mp 134-135 °C (from petroleum ether/CHCl₃ 1/1), lit^[S2] mp 134-135 °C. All spectroscopic data were in accord with those previously reported.^[S2]

3-Amino-4-(4-bromophenyl)furazan (8e). Yield 73%, mp 146-147°C (from hexane), lit^[S2] mp 146-147 °C. ¹H NMR (DMSO- d_6): δ 7.72 (m, 4H), 6.23 (s, 2H); ¹³C NMR (DMSO- d_6) δ : 160.2, 151.2, 137.1, 134.8, 129.8, 128.9; ¹⁵N NMR (DMSO- d_6): δ 31.53,

9.02, -332.43. IR (KBr, v/cm⁻¹): 3480, 3459, 3327, 3245, 3205, 1631, 1596, 1561, 1528, 1473, 1427, 1389,

1307, 1076, 1049, 1011, 983, 882, 832. Anal. calcd. (%) for C₈H₆ BrN₃O (240.06): C 40.03, H 2.52, N 17.50; found: C 40.10, H 2.54, N 17.46.

3-Amino-4-(4-methoxyphenyl)furazan (8f). Yield 81%, mp 104-105°C (from hexane), Lit^[S2] mp 104-105°C. All spectroscopic data were in accord with those previously reported.^[S2]

3-Amino-4--(benzo[d][1,3]dioxol-5-yl)furazan (8g). Yield 75%, mp 175-177 °C (from CH₃CN). ¹H NMR (DMSO-*d*₆): δ7.27 (d, 2H), 7.08 (d, 1H), 6.14 (s, 2H), 6.12 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 160.1, 154.0, 152.9, 151.6, 127.2, 124.0, 113.9, 112.8, 106.7. IR (KBr, v/cm⁻¹): 3454, 3373, 3253, 3212, 3009, 2918, 2790, 1644, 1629, 1587, 1536, 1501,

1484, 1413, 1353, 1303, 1256, 1156, 1106, 1036, 985, 933, 883, 865, 814. Anal. calcd. (%) for C₉H₇N₃O₃ (205.17): C 52.69, H 3.44, N 20.48; found: C 52.72, H 3.40, N 20.41.

3-Amino-4-(3,4-diethoxyphenyl)furazan (**8h**). Yield 84%, mp 186-187 °C (from CH₃CN). ¹H NMR (DMSO-*d*₆): δ7.33 (d, 1H), 7.28 (d, 1H), 7.10 (d, 1H), 6.15 (s, 2H), 4.15 (d, 2H), 4.08 (d, 2H), 1.36 (t, 6H); ¹³C NMR (DMSO-*d*₆) δ: 155.2, 149.9, 148.4, 146.7, 120.6, 117.7, 113.2, 14.6, 112.2, 63.8,14.7. Anal. calcd. (%) for C₁₂H₁₅N₃O₃

(249.27): C 57.82, H 6.07, N 16.86; found: C 57.87, H 6.10, N 16.79.

3-Amino-4-([1,1'-biphenyl]-4-yl)furazan (8i). Yield 48%, mp 168-170 °C (from CHCl₃). ¹H NMR (DMSO-*d*₆): δ 7.85 (d, 2H), 7.75 (d, 1H); 7.53-7.42 (m, 3H), 6.25 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 155.4, 146.6, 141.9, 139.1, 129.0 (2C), 128.3 (2C), 128.05, 127.3 (2C), 126.7 (2C), 124.6; ¹⁵N NMR (DMSO-*d*₆): δ 30.9, -9.3, -332.4. IR (KBr, v/cm⁻¹):

3459, 3327, 3244, 3206, 3036, 1633, 1554, 1542, 1501, 1479, 1449, 1424, 1389, 1327, 1305, 1062, 987, 917, 889, 845. Anal. calcd. (%) for $C_{14}H_{11}N_3O$ (237.26): C 70.87, H 4.67, N 17.71; found: C 70.80, H 4.69, N 17.65.

3-Amino-4-(naphthalen-1-yl)furazan (8i). Yield 70%, mp 118-119 °C (from CH₃CN). ¹H NMR (DMSO-*d*₆): δ 8.15 (d, 2H), 8.08 (t, 2H), 7.83-7.61 (m, 5H), 6.10 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 156.2, 146.4, 133.3, 130.8, 130.5, 128.5, 127.3, 126.6, 125.5, 124.6, 122.3; ¹⁵N NMR (DMSO-*d*₆): δ 33.6, -13.0, -332.0. IR (KBr, ν/cm⁻¹): 3418, 3312, 3238, 3058,

1634, 1588, 1528, 1506, 1459, 1418, 1342, 1301, 1253, 1215, 1189, 1128, 1060, 1007, 957, 879, 860, 822. MS (EI), *m/z*: 211 [M]⁺, 196 [M-NH₂]⁺, 181 [M – NO]⁺, 169, 153, 140, 127, 114, 101, 87, 77, 63, 58, 51, 43, 39, 30. Anal. calcd. (%) for C₁₂H₉N₃O (211.22): C 68.24, H 4.29, N 19.89; found: C 68.29, H 4.33, N 19.85.

3-Amino-4-(pyridin-2-yl)furazan (8k). Yield 65%, mp 128-129 °C (from PrOH), lit^[S3] mp 128-128.5 °C. ¹H NMR (DMSO-*d*₆): δ 8.63 (d, 1H), 8.02 (d, 1H), 7.90 (t, 1H), 7.45 (t, 1H), 6.73 (s, 2H); 13 C NMR (DMSO- d_6) δ : 155.6, 149.1, 146.9, 143.8, 137.8, 124.9, 122.3.

IR (KBr, v/cm⁻¹): 3420, 3308, 3180, 3072, 2368, 1632, 1592, 1572, 1564, 1520, 1468, 1448, 1424, 1332, 1288, 1248, 1152, 1096, 1076, 1048, 1000, 988, 904, 868. Anal. calcd. (%) for C₇H₆N₄O (162.15): C 51.85, H 3.73, N 34.55; found: C 51.87, H 3.75, N 34.50.

3-Amino-4-(pyridin-3-yl)furazan (8l). Yield 61%, mp 161-163 °C (from ⁱPrOH), lit^[S3] mp 161-163 °C. ¹H NMR (DMSO-*d*₆): δ 8.63 (d, 1H), 8.02 (d, 1H), 7.90 (t, 1H), 7.45 (t, 1H), 6.73 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 155.6, 149.1, 146.9, 143.8, 137.8, 124.9, 122.3. IR (KBr, v/cm⁻¹): 3344, 3192, 3064, 2344, 1664, 1604, 1588, 1572, 1528, 1476, 1432, 1404, 1344, 1312, 1196,

1128, 1072, 1032, 984, 936, 908. Anal. calcd. (%) for C₇H₆N₄O (162.15): C 51.85, H 3.73, N 34.55; found: C 51.89, H 3.74, N 34.59.

3-Amino-4-(pyridin-4-yl)furazan (8m). Yield 32%, mp 207-208 °C (from ¹PrOH), lit^[S3] mp 207-208 °C. ¹H NMR (DMSO-*d*₆): δ 8.94 (d, 1H), 8.73 (dd, 1H), 8.16 (m, 1H), 7.58 NH_2 (m, 1H), 6.34 (s, 2H); 13 C NMR (DMSO- d_6) δ : 160.4, 156.0, 153.1, 150.0, 140.5, 129.0, 127.0. IR (KBr, v/cm⁻¹): 3348, 3184, 3044, 2792, 1660, 1612, 1588, 1552, 1528, 1484, 1428, 1400, 1332, 1308, 1228, 1132, 1060, 996, 960, 920, 888. Anal. calcd. (%) for C₇H₆N₄O (162.15): C 51.85, H 3.73, N 34.55; found: C 51.87, H 3.75, N 34.58.

3-Amino-4-(thiophen-2-yl)furazan (8n). Yield 47%, mp 114-115 °C (from ⁱPrOH), lit^[S2] mp 114-115 °C. ¹H NMR (DMSO-*d*₆): δ7.80 (d, 1H), 7.77 (d, 1H), 7.25 (t, 1H), 6.32 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 154.4, 142.5, 129.3, 128.7, 128.3, 125.7; IR (KBr, ν/cm⁻¹):

3450, 3324, 3242, 3211, 3107, 1635, 1595, 1548, 1489, 1424, 1345, 1289, 1234, 1060, 1000, 953, 903, 872, 849, 833. Anal. calcd. (%) for C₆H₅N₃OS (167.19): C 43.11, H 3.01, N 25.13; found: C 43.18, H 3.04, N 25.08.

3-Amino-4-(thiophen-3-yl)furazan (80). Yield 52%, mp 101-103 °C (from ⁱPrOH). ¹H NMR (DMSO- d_6): δ 6.23 (s, 2H), 7.55 (d, 1H), 7.79 (m, 1H), 8.21 (d, 1H); ¹³C NMR (DMSO-*d*₆) δ: 125.5, 126.4, 126.5, 127.8, 143.1, 154.9; ¹⁵N NMR (DMSO-*d*₆): δ31.53, 9.02,

-332.43. IR (KBr, v/cm⁻¹): 3407, 3316, 3240, 3113, 1635, 1584, 1551, 1491, 1430, 1417, 1375, 1283, 1195, 1137, 1085, 1052, 994, 865, 788. Anal. calcd. (%) for C₆H₅N₃OS (167.19): C 43.11, H 3.01, N 25.13; found: C 43.15, H 3.03, N 25.09.

3-Amino-4-(furan-2-yl)furazan (8p). Yield 47%, mp 107-108 °C (from hexane). ¹H NMR (DMSO-*d*₆): δ7.93 (d, 1H), 7.29 (d, 1H), 6.72 (dd, 1H), 6.27 (s, 2H); ¹³C NMR (DMSO-*d*₆) δ: 145.1, 145.4, 140.2, 139.9, 112.5, 112.0; IR (KBr, v/cm⁻¹): 3460, 3340, 3236, 3136,

1644,1572, 1520, 1464, 1428, 1384, 1308, 1228, 1168, 1064, 1024, 992, 908, 888, 872, 816, 752; Anal. calcd. (%) for C₆H₅N₃O₂ (151.13): C 47.69, H 3.33, N 27.81; found: C 47.75, H 3.36, N 27.76.

3.4-Diaminofurazan (9) Yield 57%, mp 185-186 °C (from H₂O), lit^[84] mp 179-180 °C. All spectroscopic data were in accord with those previously reported.^[S4]

4,4'-Diaminobifurazan (10) Yield 32%, mp 299-300°C (dec), lit^[85] mp 300 °C (dec). ¹H NMR (DMSO- d_6): δ 6.45 (s, 2H); ¹³C NMR (DMSO- d_6) δ : 155.5, 137.09; ¹⁵N NMR (DMSO-d₆): δ 27.4, -16.5, -333.6. Anal. calcd. (%) for C₄H₄N₆O₂ (168.12): C 28.58, H 2.40, N 49.99; found: C 28.64, H 2.45, N 49.94.

X-ray study

All X-ray experiments were carried out using SMART APEX2 CCD diffractometer (\u03c0(Mo- $K\alpha$)=0.71073 Å, graphite monochromator, ω -scans) at 100K. Collected data were processed by the SAINT and SADABS programs incorporated into the APEX2 program package.^[86] The structures were solved by the direct methods and refined by the full-matrix least-squares procedure against F^2 in anisotropic approximation. The refinement was carried out with the SHELXTL program.^[S7] The details of data collection and crystal structures refinement are summarized in Table S1 along with CCDC numbers which contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

	6c	8h	8n	8k
Formula	C ₄ H ₇ N ₃ O	$C_{12}H_{15}N_3O_3$	C ₆ H ₅ N ₃ OS	C ₇ H ₆ N ₄ O
Mw	113.13	249.27	167.19	162.16
Crystal system	triclinic	monoclinic	orthorhombic	monoclinic
Space group	<i>P</i> -1	$P2_{1}/c$	P212121	$P2_{1}/c$
<i>a</i> , Å	6.8785(19)	12.3025(7)	5.4688(7)	3.8205(2)
b, Å	8.749(2)	11.3020(7)	6.1708(8)	15.6562(10)
<i>c</i> , Å	9.943(4)	10.0707(6)	20.871(3)	12.1910(8)
α, deg.	106.629(7)	90	90	90
<i>β</i> , deg.	97.777(7)	113.4710(10)	90	94.4960(10)
γ, deg.	106.062(5)	90	90	90
$V, Å^3$	535.8(3)	1284.40(13)	704.32(16)	726.95(8)
Ζ	4	4	4	4
$d_{cryst}, g \cdot cm^{-3}$	1.402	1.298	1.577	1.482
F(000)	240	528	344	336
μ , mm ⁻¹	0.106	0.095	0.395	0.107
θ range, deg.	2.20 - 28.00	1.81 - 28.00	1.95 - 29.28	2.12 - 28.00
rflns collected	5549	18743	8247	7967
independent rflns	2564	3090	1930	1741
R _{int}	0.0383	0.0299	0.0760	0.0253
Completeness to θ	99.3	100.0	99.9	100.0
refined parameters	163	173	108	117
$GOF(F^2)$	0.983	1.078	1.091	1.087
rflns with $I > 2\sigma(I)$	1734	2522	1613	1486
$R_1(F) (I > 2\sigma(I))^a$	0.0447	0.0440	0.0612	0.0367
$wR_2(F^2)$ (all data) ^b	0.1031	0.1271	0.1271	0.0941
Largest diff.	0.252 /	0.322	0.373 /	0.267 /
peak/hole, <i>e</i> ·Å ⁻³	-0.214	-0.232	-0.506	-0.213
CCDC number	2278313	2278314	2278315	2278316

Table S1. Crystallographic data for compounds 6c, 8h, 8n, and 8k.

^a $R_1 = \sum |F_o - |F_c|| / \sum (F_o);$ ^b $wR_2 = (\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{\frac{1}{2}}$

The structure of compounds **6c**, **8h**, **8n**, and **8k** were established by single crystal X-ray diffraction. An asymmetric unit cell of **8h**, **8n**, **8k** contains one molecule while two symmetrically independent molecules are observed in the crystal of aminofurazan **6c** bearing alkyl substituent. General view is presented in Figures S1-S4.

Figure S1. Molecular view (both independent molecules A and A' are shown) and crystal packing fragment of compound 6c.

Figure S2. Molecular view and crystal packing fragment of compound 8h.

Figure 3S. Molecular view and crystal packing fragment of compound 8n.

Figure 4S. Molecular view and crystal packing fragment of compound 8k.

References

[S1] A. B. Sheremetev, Yu. L. Shamshina and D. E. Dmitriev, *Russ. Chem. Bull.*, 2005, 54, 1032-1037. DOI: 10.1007/s11172-005-0352-y

[S2] A. B. Sheremetev, Russ. Chem. Bull., 2005, 54, 1057-1059. DOI: 10.1007/s11172-005-0359-4

S3 Y. N. Matyushin, T. S. Kon'kova, E. A. Miroshnichenko, A. V. Inozemtsev, A. B. Sheremetev, D. E. Dmitriev, A. V. Popov, V. P. Ivshin, Energies of isomerization of furazanylpyridines, *Proc. 41th International Annual Conference of ICT, Energetic Materials for High Performance, Insensitive and Zero Pollution*, June 29 - July 2, **2010**, Karlsruhe, FRG, 60/1-11.

[S4] A. Gunasekaran, T. Jayachandran, J.H. Boyer and M.L. Trudell, *J. Heterocycl. Chem.*, 1995, *32*, 1405-1407.

[**S5**] A. B. Sheremetev, V. O. Kulagina, I. A. Kryazhevskikh, T. M. Melnikova and N. S. Aleksandrova, *Russ. Chem. Bull.*, **2002**, *51*, (8), 1533-1539. **DOI**: 10.1023/A:1020931511013

[S6]. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.

[**S7**]. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.

[S8]. I. V. Tselinskii, S. F. Mel'nikova, M. P. Zelenov. Acid-base properties of 1, 2, 5-oxadiazoles. III. Furazanylacetic acids. *Zhurnal Organicheskoi Khimii*, **1996**, *32*, 766-769 [*Russ. J. Org. Chem.*, **1996**, *32*, 734-737 (Engl.Transl.)]

122.246

61.564

42.166

24

7.501

42.518

40.201

