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Fig. S1 TEM image of α-Fe2O3-1M.

Fig. S2 α-Fe2O3-1M mapping of SEM(a) and TEM(b)

Fig. S3 High-resolution XPS spectra of C 1s core levels for the as-prepared α-Fe2O3 and α-Fe2O3-1 
samples.
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Fig. S4 O1s high-resolution XPS spectra of α-Fe2O3-650℃.

Fig. S5 O1s high-resolution XPS spectra of α-Fe2O3-0.1M.

Figure S5 
Fig. S6 O1s high-resolution XPS spectra of α-Fe2O3-3M.
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Fig. S7 CV curves of (a) α-Fe2O3 nanosheets, (b) α-Fe2O3-0.01M, (c) α-Fe2O3-0.1M, (d) α-Fe2O3-1M ,(e) 
α-Fe2O3-2M and(f) α-Fe2O3-3M at different scan rates.
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Fig. S8 Anodic and cathodic current densities (denoted as ja and jc, respectively) as a function of scan rate 
for iron oxide samples at a potential of 1.0 V vs.RHE.

Fig. S9 The ECSA value of electrocatalysts was judged by twice the double-layer capacitance.
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Fig. S10 CV curves of (a) α-Fe2O3 nanosheets, (b) α-Fe2O3-0.01M, (c) α-Fe2O3-0.1M, (d) α-Fe2O3-1M 
,(e) α-Fe2O3-2M and(f) α-Fe2O3-3M under different atmospheres.

Fig. S11 LSV curves of RRDE at 1600 r.p.m. in 0.1 M KOH solution.
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Fig. S12 Comparison of LSV curves of α-Fe2O3-1M catalysts before and after testing by 
Chronoamperometry

Table S1 The simulated element values of the fitted equivalent circuit of the EIS spectrum.
α-Fe2O3 α-Fe2O3-1M α-Fe2O3-2M

Rs/Ω 49.14 54.41 40
Rct/Ω 1760 611.3 2459

Table S2 Activity comparison of iron oxide materials for electrocatalytic oxygen reduction process in 0.1 
M KOH electrolyte

Catalysts Current density at 0.4V vs. RHE (mA 
cm-2)

ref

α-Fe2O3-OV 5.75 this work
OMCs-Fe2O3 4.35 (S1)
{012}-Fe2O3-x 3.20 (S2)

α-Fe2O3/N-CNTs 3.82 (S3)
α-Fe2O3/Fe3O4 4.90 (S4)
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