Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Support Information

Cobalt (II) terpyridine complexes: synthesis, characterization, antiproliferative activity and molecular docking with proteins and DNA

Min Chen,^a Jiahe Li,^a Benwei Wang,^a Zhiyuan Wang,^a Xin Guan,^a Hongming Liu,*^a Lixia Pan,*^b Hailan Chen*^{c,d} and Zhen Ma*^a

- ^a School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China. E-mail: hongming9224@126.com (H. Liu), mzzz2009@sohu.com (Z. Ma).
- ^b National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China. panlixia@gxas.cn (L. Pan)
- ^c School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China. E-mail: <u>hlchen319@163.com</u>.
- ^d Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China

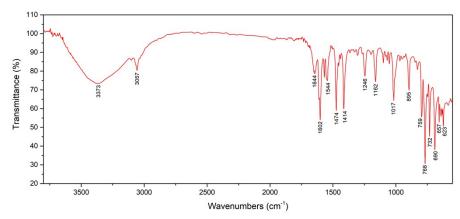


Figure S1. The IR diagram of complex $[Co(L^1)_2]Cl_2$ (1)

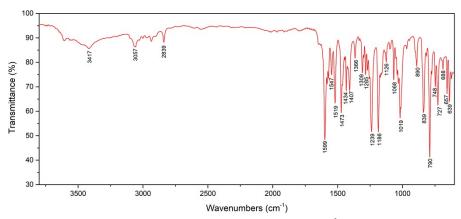


Figure S2. The IR diagram of complex $[\text{Co}(L^2)_2]\text{Cl}_2\left(2\right)$

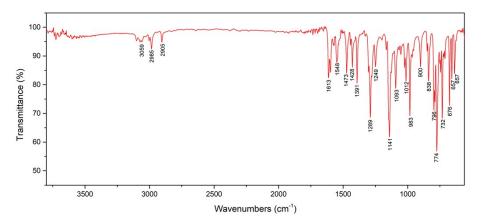


Figure S3. The IR diagram of complex $[Co(L^3)_2]Cl_2$ (3)

Figure S4. The IR diagram of complex $[Co(L^4)_2]Cl_2$ (4)

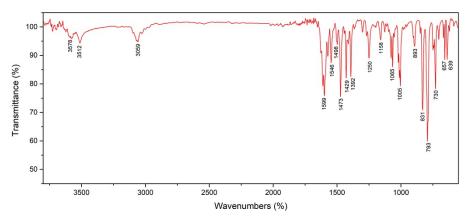


Figure S5. The IR diagram of complex $[Co(L^5)_2]Cl_2$ (5)

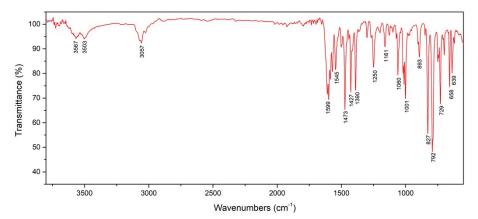


Figure S6. The IR diagram of complex $[Co(L^6)_2]Cl_2$ (6)

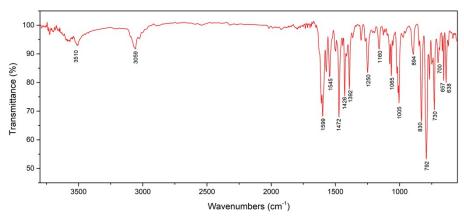


Figure S7. The IR diagram of complex $[Co(L^7)_2]Cl_2$ (7)

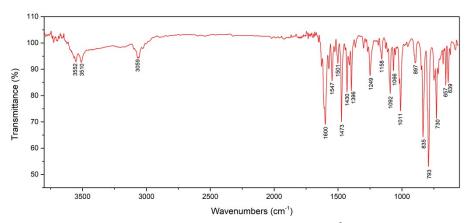


Figure S8. The IR diagram of complex $[\text{Co}(L^8)_2]\text{Cl}_2\,(8)$

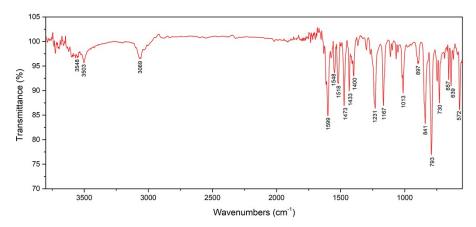


Figure S9. The IR diagram of complex $[Co(L^9)_2]Cl_2$ (9)

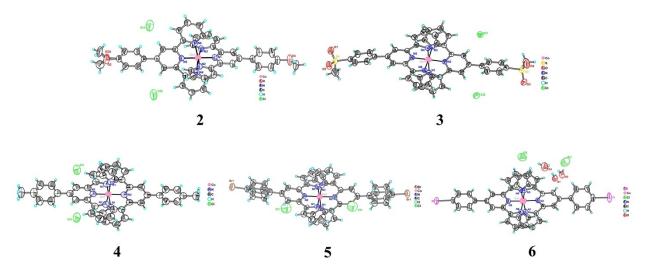


Figure S10. The crystallographic structure diagram of complexes 2-6.

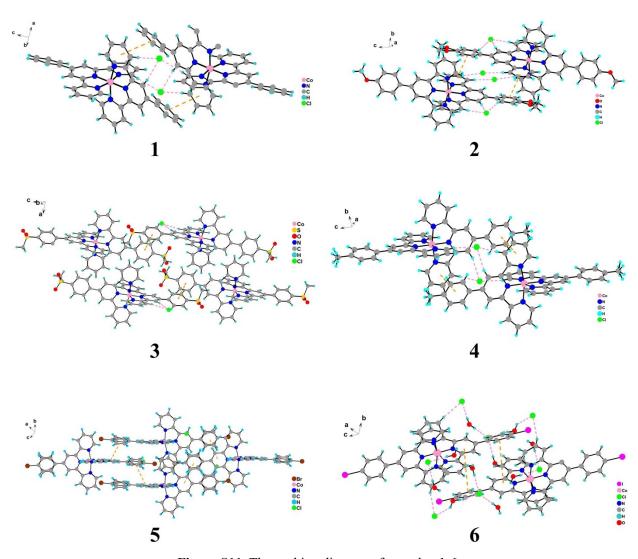
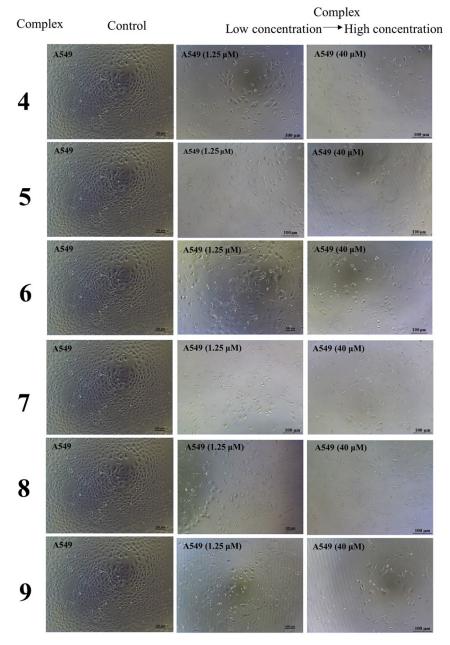
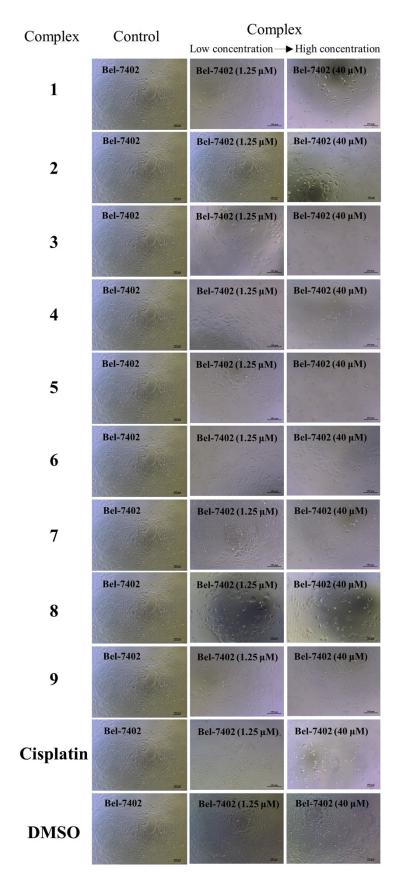
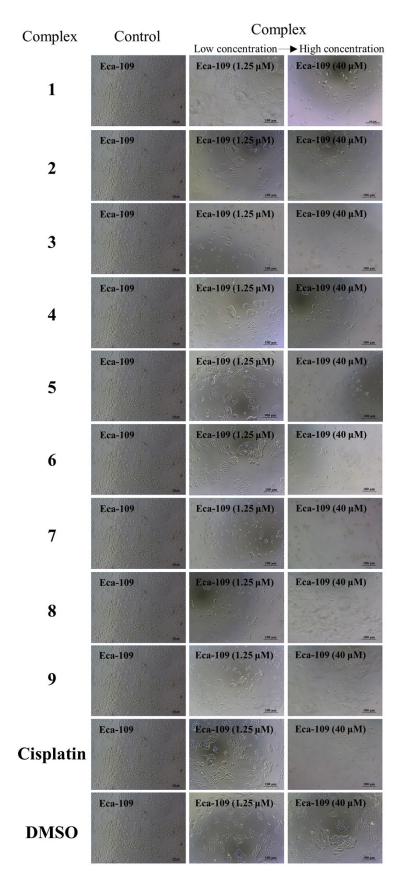


Figure S11. The packing diagram of complex 1-6.

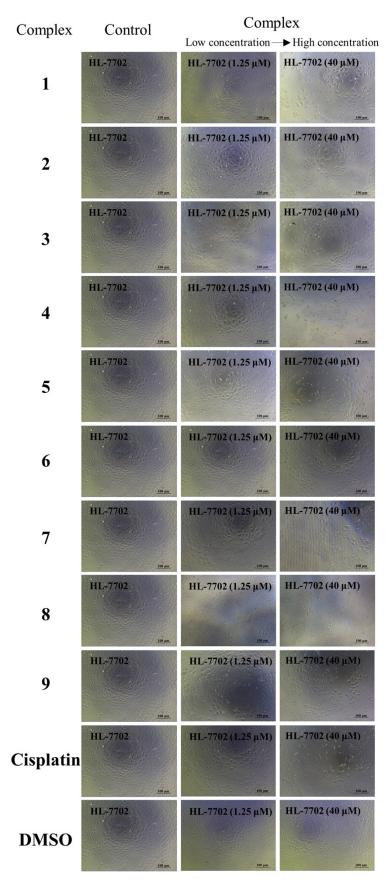

Figure S12. The microscopic images of A549 cells treated with increased concentrations of complexes 4-9.

Figure S13. The microscopic images of Bel-7402 cells treated with increased concentrations of complexes 1-9, cisplatin and DMSO.

Figure S14. The microscopic images of Eca-109 cells treated with increased concentrations of complexes 1-9, cisplatin and DMSO.

Figure S15. The microscopic images of HL-7702 cells treated with increased concentrations of complexes **1-9**, cisplatin and DMSO.

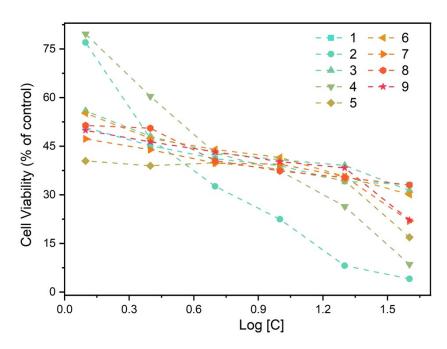


Figure S16. The curves of the cell viability vs. the concentration of complexes 1-9 against Bel-7402 cell line.

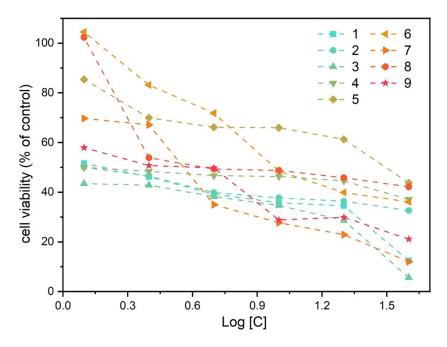


Figure S17. The curves of the cell viability vs. the concentration of complexes 1-9 against Eca-109 cell line.

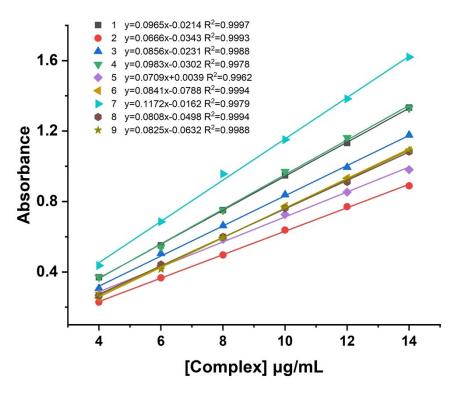
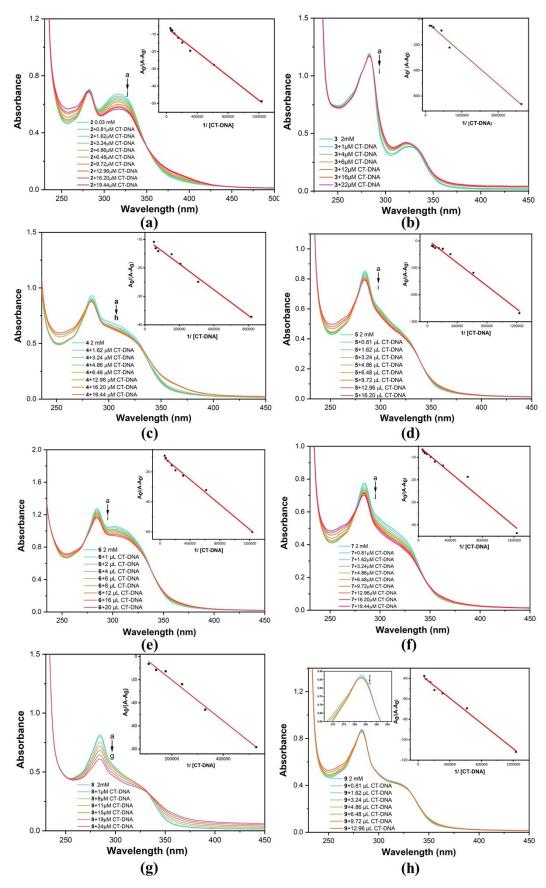



Figure S18. The standard curves of UV-Vis spectra for complexes 1-9.

Figure S19. UV-vis spectra of complexes **2-9** (a-h) in the different concentrations of CT-DNA in Tris-HCl 1.0×10^{-3} (pH 7.2).

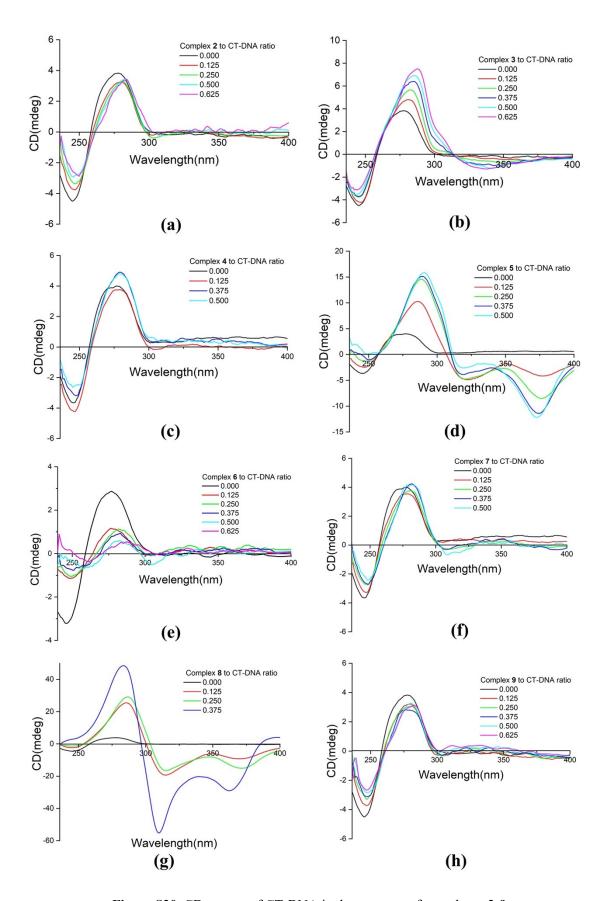


Figure S20. CD spectra of CT-DNA in the presence of complexes 2-9.

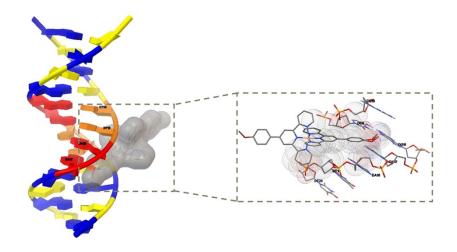


Figure S21. View of the energy minimized docked poses of complex 2 with B-DNA (PDB ID: 1BNA).

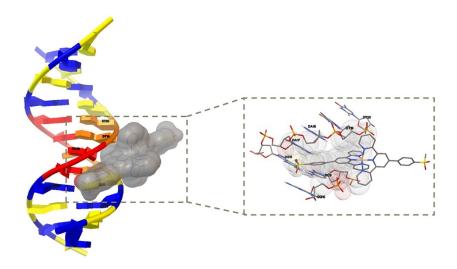


Figure S22. View of the energy minimized docked poses of complex 3 with B-DNA (PDB ID: 1BNA).

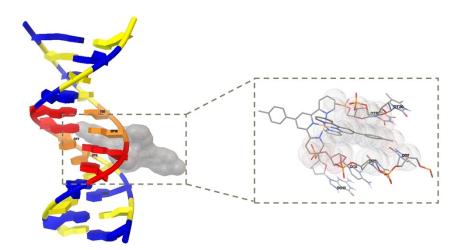


Figure S23. View of the energy minimized docked poses of complex 4 with B-DNA (PDB ID: 1BNA).

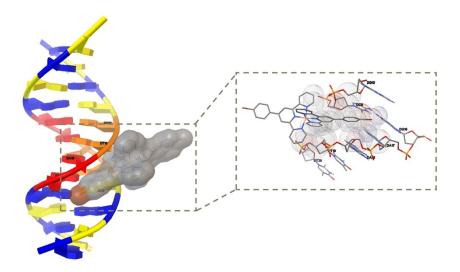


Figure S24. View of the energy minimized docked poses of complex 5 with B-DNA (PDB ID: 1BNA).

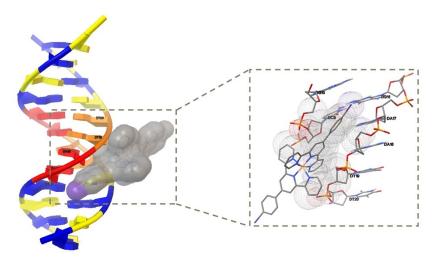


Figure S25. View of the energy minimized docked poses of complex 6 with B-DNA (PDB ID: 1BNA).

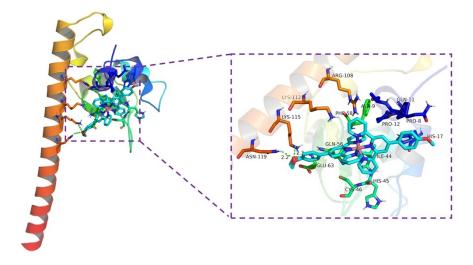


Figure S26. Binding modes of complex 2 with survivin protein (PDB ID: 3UIH).

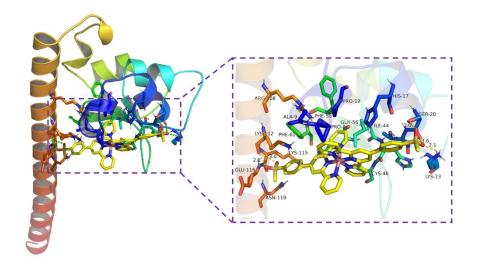


Figure S27. Binding modes of complex 3 with survivin protein (PDB ID: 3UIH).

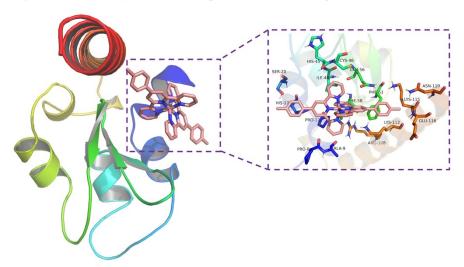


Figure \$28. Binding modes of complex 4 with survivin protein (PDB ID: 3UIH).

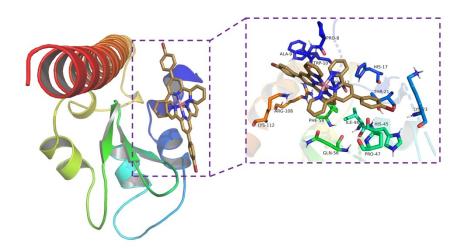


Figure S29. Binding modes of complex 5 with survivin protein (PDB ID: 3UIH).

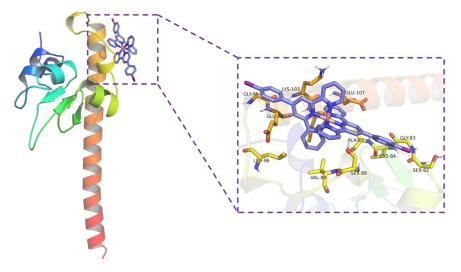


Figure S30. Binding modes of complex 6 with survivin protein (PDB ID: 3UIH).

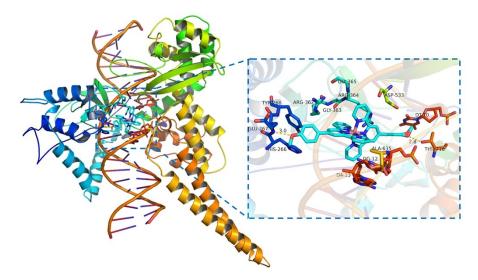


Figure S31. Binding modes of complex 2 with Top I (PDB ID: 1T8I).

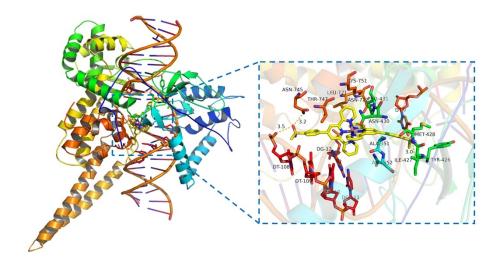
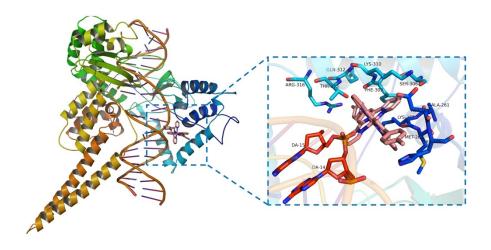



Figure \$32. Binding modes of complex 3 with Top I (PDB ID: 1T8I).

Figure S33. Binding modes of complex **4** with Top I (PDB ID: 1T8I).

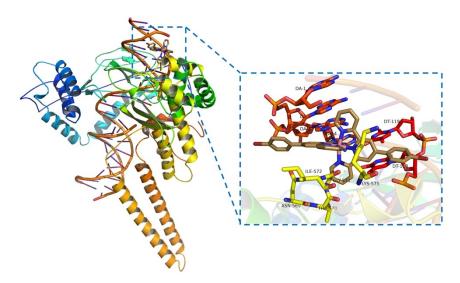
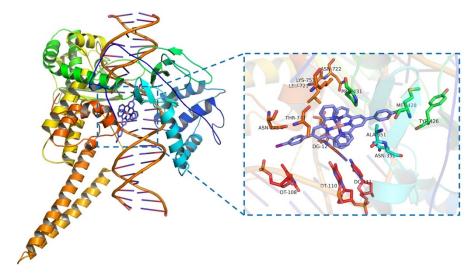



Figure S34. Binding modes of complex 5 with Top I (PDB ID: 1T8I).

Figure S35. Binding modes of complex **6** with Top I (PDB ID: 1T8I).

 Table S1. Selected geometric parameters of the complexes.

Empirical formula	Complex	1	2	3	4	5	6
Temperature 296(2) K 296(2) K 296(2) K 296(2) K 296(2) K 296(2) C 298 K Crystal system Triclinic Triclinic Triclinic Tetragonal Monoclinic Monoclinic Space group $P\bar{1}$ $P\bar{1}$ $P\bar{1}$ IA_1/a $C2/c$ $C2/c$ $C2/c$ a (Å) 10.6413(7) 10.725(2) 11.5679(4) 11.4940(5) 24.649(4) 16.5178(9) b (Å) 11.5087(6) 11.525(2) 14.3215(5) 11.4940(5) 24.649(4) 16.5178(9) b (Å) 11.5087(6) 11.525(2) 14.3215(5) 11.4940(5) 24.649(4) 16.5178(9) b (Å) 11.98685(11) 19.766(4) 15.9903(6) 35.533(4) 23.874(3) 37.360(2) α (°) 97.120(4) 106.16(3) 73.603(3) 90 90° 90° β (°) 95.761(5) 94.85(3). 76.313(3) 90 90° 90° Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16)	Empirical formula	12 30 2	3. 2 0	$\rm H_{34}Cl_2CoN_6O_4S$	$C_{44}H_{34}Cl_2CoN_6$	12 20 2 2	$\begin{array}{c} C_{42}H_{31}Cl_2CoI_2N_6 \\ O_3 \end{array}$
Crystal system Triclinic	Formula weight	748.55	808.6	904.72	776.6	906.35	1051.36
Space group $P\overline{1}$ $P\overline{1}$ $P\overline{1}$ $P\overline{1}$ IA_1/a $C2/c$ $C2/c$ a (Å) 10.6413(7) 10.725(2) 11.5679(4) 11.4940(5) 24.649(4) 16.5178(9) b (Å) 11.5087(6) 11.525(2) 14.3215(5) 11.4940(5) 9.6058(17) 14.7305(9) c (Å) 19.8685(11) 19.766(4) 15.9903(6) 35.533(4) 23.874(3) 37.360(2) α (°) 97.120(4) 106.16(3) 73.603(3) 90 90° 90 β (°) 95.761(5) 94.85(3). 76.313(3) 90 118.391(19)° 92.850(5) γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90° Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 F (000) 70	Temperature	296(2) K	296(2) K	296(2) K	296(2) K	296(2)	298 K
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystal system	Triclinic	Triclinic	Triclinic	Tetragonal	Monoclinic	Monoclinic
b (Å) 11.5087(6) 11.525(2) 14.3215(5) 11.4940(5) 9.6058(17) 14.7305(9) c (Å) 19.8685(11) 19.766(4) 15.9903(6) 35.533(4) 23.874(3) 37.360(2) α (°) 97.120(4) 106.16(3) 73.603(3) 90 90° 90° β (°) 95.761(5) 94.85(3). 76.313(3) 90 118.391(19)° 92.850(5) γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90° Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 Crystal size (mm³) 0.15 × 0.11 × 0.07 × 0.11 × 0.07 × 0.1 × 0.07 × 0.14 × 0.12 × 0.07 × 0.14 × 0.12 × 0.07 × 0.14 × 0.12 × 0.07 × 0.14 × 0.07 × 0.12 × 0.07 × 0.05 × 0.12 0.2 × 0.13 × 0.00 × 0.05 × 0.12	Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$I4_1/a$	C2/c	C2/c
c (Å) 19.8685(11) 19.766(4) 15.9903(6) 35.533(4) 23.874(3) 37.360(2) a (°) 97.120(4) 106.16(3) 73.603(3) 90 90° 90 β (°) 95.761(5) 94.85(3). 76.313(3) 90 118.391(19)° 92.850(5) γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90 Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) 0.15 × 0.11 × 0.07 × 0.11 × 0.07 × 0.1 × 0.07 × 0.1 × 0.07 × 0.12 0.12 0.2 × 0.13 × 0.00 θ_{max} , θ_{min} (°) 3.053, 29.494 2.877, 29.525 <th< td=""><td>a (Å)</td><td>10.6413(7)</td><td>10.725(2)</td><td>11.5679(4)</td><td>11.4940(5)</td><td>24.649(4)</td><td>16.5178(9)</td></th<>	a (Å)	10.6413(7)	10.725(2)	11.5679(4)	11.4940(5)	24.649(4)	16.5178(9)
α (°) 97.120(4) 106.16(3) 73.603(3) 90 90° 90 β (°) 95.761(5) 94.85(3). 76.313(3) 90 118.391(19)° 92.850(5) γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90 Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) 0.15 × 0.11 × 0.11 × 0.07 × 0.1 × 0.07 × 0.1 × 0.07 × 0.14 × 0.12 × 0.07	b (Å)	11.5087(6)	11.525(2)	14.3215(5)	11.4940(5)	9.6058(17)	14.7305(9)
β (°) 95.761(5) 94.85(3). 76.313(3) 90 118.391(19)° 92.850(5) γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90 Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) 0.15 × 0.11 × 0.11 × 0.07 × 0.11 × 0.07 × 0.1 × 0.07 × 0.14 × 0.12 × 0.02 × 0.03 × 0.00 0.12 0.2 × 0.13 × 0.00 $θ_{max}$, $θ_{min}$ (°) 3.053, 29.494 2.877, 29.525 2.756, 29.419° 3.398, 29.488° 1.878, 29.328° 3.249, 29.420° Index range h , k , l -14< -1 -1 -1 -1 -1 -1 -1 -2 <th< td=""><td>c (Å)</td><td>19.8685(11)</td><td>19.766(4)</td><td>15.9903(6)</td><td>35.533(4)</td><td>23.874(3)</td><td>37.360(2)</td></th<>	c (Å)	19.8685(11)	19.766(4)	15.9903(6)	35.533(4)	23.874(3)	37.360(2)
γ (°) 111.838(6) 97.02(3) 77.065(3) 90 90° 90 Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) 0.15 × 0.11 × 0.11 × 0.07 × 0.1 × 0.07 × 0.1 × 0.07 × 0.14 × 0.12 × 0.14 × 0.14 × 0.12 × 0.14 × 0.14 × 0.12 × 0.14 × 0.14 × 0.12 × 0.14 × 0.14 × 0.12 × 0.14 × 0.14 × 0.14 × 0.14 × 0.1	α (°)	97.120(4)	106.16(3)	73.603(3)	90	90°	90
Volume (ų) 2212.7(2) 2311.0(9) 2433.90(16) 4694.3(6) 4973.0(16) 9079.1(9) Z 2 2 2 4 4 8 Density (calculated) (Mg/m³) 1.124 1.162 1.235 1.099 1.211 1.538 Absorption coefficient (mm⁻¹) 0.541 0.526 0.592 0.512 2.090 1.898 F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) 0.15 × 0.11 × 0.11 × 0.07 × 0.11 × 0.07 × 0.1 × 0.07 × 0.15 × 0.07 × 0.14 × 0.12 × 0.05 0.12 0.2 × 0.13 × 0.05 θ_{max} , θ_{min} (°) 3.053, 29.494 2.877, 29.525 2.756, 29.419° 3.398, 29.488° 1.878, 29.328° 3.249, 29.420° Index range h , k , l -14<= k <=13 -14<= k <=13 -19<= k <=15 -9<= k <=15 -32<= k <=28 -22<= k <=19 Reflections collected/unique 20797 24031 27736 12160 1236 25664	β (°)	95.761(5)	94.85(3).	76.313(3)	90	118.391(19)°	92.850(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	γ (°)	111.838(6)	97.02(3)	77.065(3)	90	90°	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Volume (Å ³)	2212.7(2)	2311.0(9)	2433.90(16)	4694.3(6)	4973.0(16)	9079.1(9)
$\begin{array}{c} \text{(Mg/m}^3) \\ \text{Absorption coefficient} \\ \text{(mm}^{-1}) \\ \text{F (000)} \\ \text{Crystal size (mm}^3) \\ \\ \theta_{\text{max}}, \theta_{\text{min}} (^{\circ}) \\ \text{Index range } h, k, l \\ \text{Reflections} \\ \text{collected/unique} \\ \end{array} \begin{array}{c} 1.124 \\ 1.162 \\ 1.162 \\ 1.235 \\ 1.235 \\ 1.235 \\ 1.235 \\ 1.099 \\ 1.211 \\ 1.235 \\ 1.099 \\ 1.211 \\ 1.538 \\ 1.878 \\ 2.090 \\ 1.898 \\ 1.812 \\ 4128 \\ 4128 \\ 0.15 \times 0.11 \times 0.11 \times 0.07 \times 0.1 \times 0.07 \times 0.1 \times 0.07 \times 0.14 \times 0.12 \times 0.14 \times 0.12 \times 0.11 \times 0.006 \times 0.007 \times 0.05 \times 0.12 \times 0.14 \times 0.12 \times 0.006 \times 0.007 \times 0.05 \times 0.12 \times 0.006 \times 0.007 \times 0.005 \times 0.12 \times 0.006 \times 0.007 \times 0.005 \times 0.12 \times 0.006 \times 0.007 \times 0.006 \times 0.006 \times 0.006 \times 0.007 \times 0.006 \times 0.006 \times 0.007 \times 0.006 \times 0.006 \times 0.006 \times 0.007 \times$	Z	2	2	2	4	4	8
$\begin{array}{c} \text{(mm}^{-1}) \\ \text{F (000)} \\ \text{F (000)} \\ \text{Crystal size (mm}^3) \\ \theta_{\text{max}}, \theta_{\text{min}} (^{\circ}) \\ 1.898 \\ \text{Crystal size (mm}^3) \\ \theta_{\text{max}}, \theta_{\text{min}} (^{\circ}) \\ 1.898 \\ \text{Crystal size (mm}^3) \\ \theta_{\text{max}}, \theta_{\text{min}} (^{\circ}) \\ 1.898 \\ \text{Crystal size (mm}^3) \\ 0.1 \\ 0.06 \\ 0.07 \\ 0.05 \\ 0.12 \\ 0.2 \times 0.13 \times 0.005 \\ 0.2 \times 0.$		1.124	1.162	1.235	1.099	1.211	1.538
F (000) 770 834 930 1604 1812 4128 Crystal size (mm³) $0.15 \times 0.11 \times 0.07 \times 0.11 \times 0.07 \times 0.1 \times 0.07 \times 0.1 \times 0.07 \times 0.14 \times 0.12 \times 0.2 \times 0.13 \times 0.006$ 0.07 0.05 0.12 0.2 × 0.13 × 0.05 0.2 × 0.13 × 0.05 0.2 × 0.13 × 0.05 0.12 0.2 × 0.13 × 0.05 0.2 ×	Absorption coefficient	0.541	0.526	0.592	0.512	2.090	1.898
Crystal size (mm³) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	` /	770	834	930	1604	1812	4128
$\theta_{\text{max}}, \theta_{\text{min}}(^{\circ}) = \begin{cases} 0.11 & 0.06 & 0.07 & 0.05 & 0.12 \\ 0.05 & 0.05 & 0.12 \\ 0.$		$0.15 \times 0.11 \times$	$0.11 \times 0.07 \times$	$0.1 \times 0.07 \times$	$0.1 \times 0.07 \times$	$0.14 \times 0.12 \times$	
Index range h, k, l $-13 <= h <= 9$ $-13 <= h <= 10$ $-15 <= h <= 15$ $-15 <= h <= 15$ $-9 <= h <= 15$ $-9 <= k <= 15$ $-13 <= k <= 12$ $-13 <= k <= 12$ $-20 <= k <= 19$ $-27 <= k <= 26$ $-27 <= k <= 25$ $-21 <= k <= 12$ $-21 <= k <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 16$ $-20 <= 1$	Crystal size (mm ³)	0.1	0.06	0.07	0.05	0.12	$0.2 \times 0.13 \times 0.12$
Index range h, k, l	$\theta_{\mathrm{max}},\theta_{\mathrm{min}}(^{\circ})$	3.053, 29.494	2.877, 29.525	2.756, 29.419°	3.398, 29.488°	1.878, 29.328°	3.249, 29.420°
-27<= <=26 -27<= <=25 -21<= <=21 -48<= <=46 -20<= <=32 -48<= <=39 Reflections 20797 24031 27736 12160 12236 25664	, , , , , , , , , , , , , , , ,	-13<=h<=9	-13<=h<=10	-15<=h<=15	-9<=h<=15	-32<=h<=28	-22<=h<=20
-27<= <=26 -27<= <=25 -21<= <=21 -48<= <=46 -20<= <=32 -48<= <=39 Reflections 20797 24031 27736 12160 12236 25664	Index range h, k, l	-14<= <i>k</i> <=13	-14<= <i>k</i> <=13	-19<= <i>k</i> <=15	-9<= <i>k</i> <=15	-13<= <i>k</i> <=12	-20<=k<=19
collected/unique 20797 24031 27736 12160 12236 25664		-27<= <i>l</i> <=26	-27<= <i>l</i> <=25	-21<= <i>l</i> <=21	-48<= <i>l</i> <=46	-20<= <i>l</i> <=32	-48<= <i>l</i> <=39
		20797	24031	27736	12160	12236	25664
Data/restraints/parameters $ \frac{10239 / 0 /}{460} $	_	10239 / 0 / 460	10726 / 50 / 518	11431 / 0 / 534	2882 / 0 / 127	5700 / 159 / 277	10781 / 0 / 481
Goodness-of-fit on F ² 1.036 1.06 1.037 1.058 0.980 1.024	Goodness-of-fit on F ²		1.06	1.037	1.058		1.024
R1 = 0.0672 R1 = 0.0647 R1 = 0.0442 R1 = 0.0695 R1 = 0.0793 R1 = 0.0638	Final R indices $[I > 2\sigma(I)]$						
Final R indices $1/2 \cos(t)$							wR2 = 0.1677
R1 = 0.0825 R1 = 0.0812 R1 = 0.0550 R1 = 0.0945 R1 = 0.1635 R1 = 0.0819	R indices (all data)						
R indices (all data) $WR2 = 0.2232 WR2 = 0.2147 WR2 = 0.1376 WR2 = 0.2407 WR2 = 0.2595 WR2 = 0.1851$							
Largest diff. peak and hole 0.559 and - 0.855 and - 1.067 and - 0.915 and - 0.467 and -	Largest diff, peak and hole						
(e Å $^{-3}$) 1.062 1.029 0.515 0.296 0.468	• •						1.382 and -1.646

Table S2. Distribution coefficients of complexes 1-9

	Absorbance			$C_{organic}(\mu g/mL)$			Log D _{7.4}
Complex	1	2	3	1	2	3	Average
1	0.950	0.948	0.946	10.07	10.05	10.02	0.612
2	0.637	0.638	0.639	10.08	10.09	10.11	0.623
3	0.837	0.838	0.839	10.05	10.06	10.07	0.615
4	0.970	0.970	0.969	10.17	10.17	10.16	0.639
5	0.728	0.727	0.725	10.21	10.20	10.17	0.645
6	0.774	0.773	0.773	10.14	10.13	10.13	0.632
7	1.151	1.150	1.152	9.96	9.95	9.97	0.593
8	0.764	0.762	.0761	10.07	10.05	10.03	0.613
9	0.767	0.766	0.765	10.06	10.05	10.04	0.613

Table S3. Hydrogen bond interactions for compounds 2, 3.

Compound	Receptor	Bonds formed	Bond distance (Å)
	B-DNA (1BNA)	OH–N(DA-17)	2.2
	B-DNA (1BNA)	OH–N(DG-16)	2.8
	survivin (3UIH)	OH–N(ASN-119)	2.2
2	survivin (3UIH)	OH–N(LYS-115)	2.3
	DNA-topoisomerase I (1T8I)	O–HO (DLU-267)	3.0
	DNA-topoisomerase I (1T8I)	OH–N()	2.8
3	B-DNA (1BNA)	O–HO2 (DA-17)	2.6
	B-DNA (1BNA)	O2H–N(DA-17)	2.5
	B-DNA (1BNA)	O–HO1 (DG-16)	2.1
	survivin (3UIH)	O–HO1 (LYS-112)	2.8
	survivin (3UIH)	O–HO2 (LYS-112)	3.0
	survivin (3UIH)	O–HO3 (SER-20)	3.0
	survivin (3UIH)	O–HO4 (SER-20)	3.6
	survivin (3UIH)	OH–N(LYS-23)	2.1
	DNA-topoisomerase I (1T8I)	O–HO2 (DT-108)	3.5
	DNA-topoisomerase I (1T8I)	O–HO2 (ANS-745)	3.2
	DNA-topoisomerase I (1T8I)	O–HO4 (TYR-426)	3.0
	DNA-topoisomerase I (1T8I)	OH–N(MET-428)	3.0

Synthesis of complexes 1-9

4'-(substituted phenyl)-terpyridine ligands L^1 - L^9 were synthesized from each of the 4-substituted benzaldehyde and 2-acetylpyridine according to the literature. Complexes 1-9 were synthesized by the reaction of L^1 - L^9 with $CoCl_2 \cdot 6H_2O$ added in stoichiometric amounts, respectively, in a methanol- CH_2Cl_2 solution.

[Co(L¹)₂]Cl₂ (1). A solution of CoCl₂·6H₂O (0.12 g, 0.48 mmol) in ethanol (10 mL) was added dropwise to a 10 mL dichloromethane solution of L¹ (0.10 g, 0.32 mmol) in a 50 mL flask, and stirred for 8 h at ambient temperature. A brown solid (0.075 g, 75% yield based on L¹) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₂H₃₀N₆CoCl₂·3.75 CH₂Cl₂·2.1H₂O: C, 49.73; H, 3.80; N, 7.60%. Found: C, 49.25; H, 3.36; N, 8.16 %. IR (KBr disc) (cm⁻¹) (s = strong, m = medium, w = weak): 3057 (m, v_{C-H}), 1644 (m, n-pyridyl-H), 1602 (s), 1544 (m, n-pyridyl-H), 1474 (s, *n*-pyridyl-H), 1414 (s), 1246 (s, β_{C-H}), 1162 (s, β_{C-H}), 1017 (s, β_{C-H}), 895 (m, γ_{C-H}), 759 (m, γ_{C-H}), 768 (s, γ_{C-H}), 732 (m, γ_{C-H}), 690 (m, γ_{C-H}), 657 (m), 623 (m).

[Co(L²)₂]Cl₂ (2). A solution of CoCl₂·6H₂O (0.11 g, 0.44 mmol) in ethanol (10 mL) was added dropwise to a solution of L² (0.10 g, 0.29 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.067 g, 67% yield based on L²) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₄H₃₄N₆O₂CoCl₂·2.1CH₂Cl₂: C, 56.10; H, 3.90; N, 8.51%. Found: C, 55.72; H, 4.12; N, 8.70 %. IR (KBr disc) (cm⁻¹): 3057 (m, v_{C-H}), 2839 (w, v_{C-H}), 1599 (s, n-pyridyl-H), 1547 (w, n-pyridyl-H), 1519 (s, n-pyridyl-H), 1473 (s, v_{C-C}), 1434 (m, v_{C-C}), 1407 (m, v_{C-C}), 1366 (w, v_{C-C}), 1239 (s, $v_{Ar-O-Me}$), 1183 (s, $v_{Ar-O-Me}$), 1126 (w, β_{C-H}), 1068 (m, β_{C-H}), 1019 (s, β_{C-H}) 890 (w, γ_{C-H}), 839 (s, γ_{C-H}), 790 (s, γ_{C-H}), 748 (m, γ_{C-H}), 727 (s, γ_{C-H}), 657 (m), 639 (s).

[Co(L³)₂]Cl₂ (3). A solution of CoCl₂·6H₂O (0.09 g, 0.38 mmol) in ethanol (10 mL) was added dropwise to a solution of L³ (0.10 g, 0.29 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.071 g, 71% yield based on L³) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₄H₃₄N₆O₄S₂CoCl₂·CH₂Cl₂: C, 54.61; H, 3.66; N, 8.49%. Found: C, 54.44; H, 3.20; N, 8.65 %. IR (KBr disc) (cm⁻¹): 3059 (w, v_{C-H}), 2985 (w, v_{C-H}), 2905 (w, v_{C-H}), 1613 (s, n-pyridyl-H), 1548 (m, n-pyridyl-H), 1473 (s, v_{C-C}), 1428 (s, v_{C-C}), 1391 (s, v_{C-C}), 1289 (s, v_{SO2}), 1249 (w, v_{SO2}), 1141 (s, v_{SO2}), 1093 (m, β_{C-H}), 1012 (m, β_{C-H}), 983 (s, γ_{C-H}), 900 (w, γ_{C-H}), 838 (m, γ_{C-H}), 796 (m, v_{S-O}), 774 (s, γ_{C-H}), 732 (s, γ_{C-H}), 676 (m), 657 (m), 636 (m).

 $[\mathbf{Co}(\mathbf{L}^4)_2]\mathbf{Cl}_2$ (4). A solution of $\mathbf{CoCl}_2 \cdot \mathbf{6H}_2\mathbf{O}$ (0.11 g, 0.46 mmol) in ethanol (10 mL) was added dropwise to a solution of \mathbf{L}^4 (0.10 g, 0.31 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.065 g, 65% yield based on \mathbf{L}^4)

was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. IR (KBr disc) (cm⁻¹): 3057 (w, $v_{\text{C-H}}$), 3022 (w, $v_{\text{C-H}}$), 2918 (w, $v_{\text{C-H}}$), 2864 (w, $v_{\text{C-H}}$), 1602 (s, n-pyridyl-H), 1547 (m, n-pyridyl-H), 1473 (s, $v_{\text{C-C}}$), 1428 (m, $v_{\text{C-C}}$), 1403 (s, $v_{\text{C-C}}$), 1251 (m, $\beta_{\text{C-H}}$), 1013 (m, $\beta_{\text{C-H}}$), 894 (w, $\gamma_{\text{C-H}}$), 826 (m, $\gamma_{\text{C-H}}$), 792(s, $\gamma_{\text{C-H}}$), 730 (s, $\gamma_{\text{C-H}}$), 688 (w), 657 (m). [Co(L⁵)₂]Cl₂ (5). A solution of CoCl₂·6H₂O (0.09 g, 0.39 mmol) in ethanol (10 mL) was added dropwise to a solution of L⁵ (0.10 g, 0.26 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.072 g, 72% yield based on L⁵) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₂H₂₈Br₂N₆CoCl₂·2.2CH₂Cl₂·0.2H₂O: C, 48.40; H, 3.01; N, 7.66%. Found: C, 47.96; H, 2.52; N, 8.06 %. IR (KBr disc) (cm⁻¹): 3057 (w, $v_{\text{C-H}}$), 1599 (s, n-pyridyl-H), 1545 (m, n-pyridyl-H), 1473 (s, $v_{\text{C-C}}$), 1427 (m, $v_{\text{C-C}}$), 1390 (m, $v_{\text{C-C}}$), 1250 (m, $\beta_{\text{C-H}}$), 1161 (w, $\beta_{\text{C-H}}$), 1060 (m, $\beta_{\text{C-H}}$), 1001 (s, $\beta_{\text{C-H}}$), 893 (w, $\gamma_{\text{C-H}}$), 827 (s, $\gamma_{\text{C-H}}$), 792 (s, $\gamma_{\text{C-H}}$), 729 (m, $\gamma_{\text{C-H}}$), 658 (m, $v_{\text{C-Br}}$), 639 (m).

[Co(L⁶)₂]Cl₂ (6). A solution of CoCl₂·6H₂O (0.08 g, 0.34 mmol) in ethanol (10 mL) was added dropwise to a solution of L⁶ (0.10 g, 0.23 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.069 g, 69% yield based on L⁶) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₂H₂₈I₂N₆CoCl₂·2.1CH₂Cl₂·1.8H₂O: C, 43.73; H, 2.98; N, 6.94%. Found: C, 43.49; H, 2.97; N, 7.27 %. IR (KBr disc) (cm⁻¹): 3059 (w, v_{C-H}), 1599 (s, n-pyridyl-H), 1546 (m, n-pyridyl-H), 1473 (s, v_{C-C}), 1429 (m, v_{C-C}), 1392 (m, v_{C-C}), 1250 (m, β_{C-H}), 1158 (w, β_{C-H}), 1065 (m, β_{C-H}), 1005 (s, β_{C-H}), 893 (w, γ_{C-H}), 831 (s, γ_{C-H}), 793 (s, γ_{C-H}), 730 (m, γ_{C-H}), 657 (m), 639 (m), 585 (w, v_{C-I}).

[Co(L⁷)₂]Cl₂ (7). A solution of CoCl₂·6H₂O (0.09 g, 0.39 mmol) in ethanol (10 mL) was added dropwise to a solution of L⁷ (0.10 g, 0.26 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.066 g, 66% yield based on L⁷) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. IR (KBr disc) (cm⁻¹): 3059 (w, $v_{\text{C-H}}$), 1608 (w, $\delta_{\text{C-H}}$), 1599 (s, n-pyridyl-H), 1545 (m, n-pyridyl-H), 1472 (s, $v_{\text{C-C}}$), 1428 (m, $v_{\text{C-C}}$), 1392 (m, $v_{\text{C-C}}$), 1250 (m, $\beta_{\text{C-H}}$), 1160 (w, $\beta_{\text{C-H}}$), 1065 (m, $\beta_{\text{C-H}}$), 1005 (s, $\beta_{\text{C-H}}$), 894 (w, $\gamma_{\text{C-H}}$), 830 (s, $\gamma_{\text{C-H}}$), 792(s, $\gamma_{\text{C-H}}$), 730 (m, $\gamma_{\text{C-H}}$), 700 (w), 657 (m), 638(m).

[Co(L⁸)₂]Cl₂ (8). A solution of CoCl₂·6H₂O (0.10 g, 0.44 mmol) in ethanol (10 mL) was added dropwise to a solution of L⁸ (0.10 g, 0.29 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.072 g, 72% yield based on L⁸) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₂H₂₈Cl₂N₆CoCl₂·2.8CH₂Cl₂·2.6H₂O: C, 48.82; H, 3.54; N, 7.62%.

Found: C, 48.44; H, 3.05; N, 8.17 %. IR (KBr disc) (cm⁻¹): 3059 (w, $v_{\text{C-H}}$), 1600 (s, n-pyridyl-H), 1547 (m, n-pyridyl-H), 1473 (s, $v_{\text{C=C}}$), 1430 (m, $v_{\text{C=C}}$), 1396 (m, $v_{\text{C=C}}$), 1249 (m, $\beta_{\text{C-H}}$), 1158 (w, $\beta_{\text{C-H}}$), 1092 (m, $\beta_{\text{C-H}}$), 1011 (s, $\beta_{\text{C-H}}$), 897 (w, $\gamma_{\text{C-H}}$), 835 (s, $\gamma_{\text{C-H}}$), 793 (s, $\gamma_{\text{C-H}}$), 730 (m, $v_{\text{C-Cl}}$), 657 (m), 639 (m).

[Co(L⁹)₂]Cl₂ (9). A solution of CoCl₂·6H₂O (0.1 g, 0.46 mmol) in ethanol (10 mL) was added dropwise to a solution of L⁹ (0.10 g, 0.31 mmol) dissolved in dichloromethane (10 mL) in a 50 mL flask and stirred for 8 h at ambient temperature. A brown solid (0.070 g, 70% yield based on L⁹) was obtained upon filtration of the solution and washed with dichloromethane and dried in a desiccator. Anal. Calcd for C₄₂H₂₈F₂N₆CoCl₂·2.1CH₂Cl₂·2.4H₂O: C,52.64; H, 3.71; N, 8.35%. Found: C, 52.46; H, 3.45; N, 8.78%. IR (KBr disc) (cm⁻¹): 3069 (w, v_{C-H}), 1599 (s, n-pyridyl-H), 1548 (m, n-pyridyl-H), 1518 (m, v_{C-C}), 1473 (s, v_{C-C}), 1433 (m, v_{C-C}), 1400 (m, v_{C-C}), 1231 (s, v_{C-F}), 1167 (s, β_{C-H}), 1013 (m, β_{C-H}), 897 (w, γ_{C-H}), 841 (s, γ_{C-H}), 793 (s, γ_{C-H}), 730 (m, γ_{C-H}), 657 (m), 639 (m) and 572 (m).