No.	Elementary process	$E_{\rm a,f}({\rm eV})$	$E_{\rm a,r}(\rm eV)$	$v_{0,f}(s^{-1})$	$v_{0,r}(s^{-1})$
1	$CO(g)^{+*} \leftrightarrow CO^{*}$	0	1.60	a	b
2	$H_2(g){+}2{*}{\leftrightarrow} H{*}{+}H{*}$	0	0.82	c	b
3	$CO^{*+*}\leftrightarrow C^{*+}O^{*}$	3.18	1.37	5.59E+12	4.31E+13
4	CO*+H*↔COH*+*	2.17	1.19	3.73E+13	4.55E+13
5	$COH^{*+*}\leftrightarrow C^{*+}OH^{*}$	2.10	1.30	8.35E+12	2.08E+13
6	CO*+H*↔HCO*+*	1.68	0.40	3.23E+13	4.87E+13
7	$HCO^{*+*}\leftrightarrow CH^{*}+O^{*}$	1.10	1.28	7.44E+12	3.72E+13
8	$C^{*}\!\!+\!\!H^{*}\!\!\leftrightarrow\!\!CH^{*}\!\!+\!\!*$	0.98	1.55	6.03E+13	4.93E+13
9	$CH^{*}+H^{*}\leftrightarrow CH_{2}^{*}+*$	0.75	0.42	4.89E+13	1.25E+13
10	$CH_2^{*}\!\!+\!\!H^*\!\!\leftrightarrow\!\!CH_3^{*}\!\!+\!\!*$	0.78	0.89	6.66E+12	1.55E+13
11	$CH_3*+H*{\leftrightarrow} CH_4(g){+}2*$	1.18	1.62	7.22E+13	d
12	O*+H*↔OH*+*	1.44	1.35	5.54E+13	2.37E+13
13	$OH^{*}+H^{*}\leftrightarrow H_{2}O^{*}+*$	1.53	1.35	2.15E+14	1.87E+13
14	$OH^{*}\!\!+\!OH^{*}\!\!\leftrightarrow\!\!H_{2}O^{*}\!\!+\!O^{*}$	0.43	0.68	3.99E+12	4.69E+12
15	$H_2O^* \rightarrow H_2O(g)^{+*}$	0.05		b	
16	$CO^{*}+O^{*}\rightarrow 2^{*}+CO_{2}(g)$	1.65	0.51	8.26E+13	
17	$CO^{++} \rightarrow^{+}CO^{*}$	0.16		3.57E+12	
18	$H^{++} \rightarrow^{+}H^{*}$	0.14		1.45E+13	
19	$O^{*+*} \rightarrow^{*+} O^{*}$	0.51		9.48E+12	
20	OH*+*→*+OH*	0.29		4.28E+13	

Table S1 Elementary processes included in the kMC simulation as well as corresponding kinetic parameters

a is calculated according to Eq. 10. **b** is calculated according to Eq. 14. **c** is calculated according to Eq. 11. **d** According to Eq. 20 and the same below.

for Ni(111) surface

No.	Elementary process	$E_{\rm a,f}(\rm eV)$	$E_{\rm a,r}(\rm eV)$	$v_{0,f}(s^{-1})$	$v_{0,r}(s^{-1})$	
1	$\mathrm{CO}(\mathrm{g})^{+*} \leftrightarrow \mathrm{CO}^{*}$	0	1.64	а	b	
2	$H_2(g){+}2*{\leftrightarrow}H*{+}H*$	0	0.82	c	b	
3	CO*+*↔C*+O*	2.18	1.89	1.98E+13	6.33E+13	
4	CO*+H*↔COH*+*	1.31	0.87	9.65E+12	1.00E+14	
5	COH*+*↔C*+OH*	1.08	1.91	3.64E+13	5.63E+13	
6	CO*+H*↔HCO*+*	0.91	0.18	1.72E+13	5.09E+13	
7	HCO*+*↔CH*+O*	0.97	1.14	2.06E+13	2.20E+13	
8	$C^{*}+H^{*}\leftrightarrow CH^{*}+*$	0.94	0.82	2.21E+13	2.85E+13	
9	$\mathrm{CH}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\leftrightarrow\!\!\mathrm{CH}_{2}\!\!-\!\!1^{*}\!\!+\!\!*$	0.73	0.28	1.02E+13	2.11E+13	
10	$CH_2-1^{*+*} \leftrightarrow^{*+} CH_2^{*}$	0.32	0.60	1.37E+13	6.46E+12	
11	$CH_2*+H*\leftrightarrow CH_3*+*$	0.42	0.76	7.30E+12	1.37E+13	
12	$CH_3^*\!+\!H^*\!\leftrightarrow\!CH_4(g)\!+\!2^*$	0.92	1.07	8.24E+12	d	
13	O*+H*↔OH*+*	0.95	1.32	2.32E+14	1.14E+14	
14	$OH^{*}+H^{*}\leftrightarrow H_{2}O^{*}+*$	1.51	1.02	4.91E+14	7.09E+13	
15	$OH^*+OH^* {\leftrightarrow} H_2O^*+O^*$	0.81	0.63	4.66E+13	1.61E+13	
16	$H_2O^* \rightarrow H_2O(g)^{+*}$	0.29		b		
17	$CO^{*}+O^{*}\rightarrow 2^{*}+CO_{2}(g)$	1.79	1.07	3.16E+12		
18	CO*+OH*↔COOH-cis*+*	1.43	0.24	3.96E+13	6.70E+13	
19	COOH-cis*↔COOH-trans*	0.40	0.71	8.68E+12	2.93E+13	
20	$COOH\text{-}trans^* {\rightarrow} CO_2(g) {+} H^*$	1.00	0.96	7.61E+13		
21	$\text{COOH-trans*}{+}\text{O*}{\rightarrow}\text{CO}_2(g){+}\text{OH*}{+}{*}$	0.25	0.10	1.99E+13		
22	$COOH\text{-}trans*+OH*{\rightarrow}CO_2(g)+H_2O*+*$	0.41	0.34	2.13E+12		
23	$CO^{*+*} \rightarrow^{*}+CO^{*}$	0.13		2.56E+12		
24	H*+*→*+H*	0.17		2.00E+13		
25	O*+*→*+O*	0.39		1.08E+13		
26	OH*+*→*+OH*	0.70		4.72E+13		

Table S2 Elementary processes included in the kMC simulation as well as corresponding kinetic parameters

for Ni(211) surface

No.	Elementary process	$E_{a,f}(eV)$	$E_{\rm a,r}(\rm eV)$	$\nu_{0,f}(s^{\text{-}1})$	$\nu_{0,r}(s^{-1})$		
1	$CO(g)^{+*} \leftrightarrow CO^{*}$	0	1.59	a	b		
2	$H_2(g){+}2^*{\leftrightarrow}H^*{+}H^*$	0	0.90	c	b		
3	CO*+*↔C*+O*	2.82	1.20	4.17E+12	3.36E+13		
4	CO*+H*↔COH*+*	2.19	1.17	2.29E+13	2.55E+13		
5	$COH^{*+*}\leftrightarrow C^{*}+OH^{*}$	1.87	1.20	1.82E+13	2.00E+13		
6	CO*+H*↔HCO*+*	1.45	0.36	7.61E+13	1.33E+14		
7	HCO*+*↔CH*+O*	1.01	1.11	6.55E+12	2.54E+13		
8	$C^{*}+H^{*}\leftrightarrow CH^{*}+*$	0.95	1.46	4.26E+13	2.34E+13		
9	$\mathrm{CH}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\leftrightarrow\!\!\mathrm{CH}_{2}^{*}\!\!+\!*$	0.67	0.50	1.54E+13	8.80E+12		
10	$CH_2*+H*\leftrightarrow CH_3*+*$	0.74	0.91	5.77E+13	2.16E+14		
11	$CH_3*+H*{\leftrightarrow} CH_4(g){+}2*$	1.12	1.44	3.04E+14	d		
12	O*+H*↔OH*+*	1.29	1.29	8.43E+13	3.59E+13		
13	$OH^{*}+H^{*}\leftrightarrow H_{2}O^{*}+*$	1.49	1.13	2.23E+14	1.77E+13		
14	$OH^{*}\!\!+\!OH^{*}\!\!\leftrightarrow\!\!H_{2}O^{*}\!\!+\!O^{*}$	0.65	0.58	3.76E+12	8.10E+12		
15	$H_2O^* \rightarrow H_2O(g) + *$	0.17		b			
16	$CO^{+}O^{+}\rightarrow 2^{+}CO_{2}(g)$	1.61	0.41	2.00E+13			
17	$CO^{*+*} \rightarrow^{*+}CO^{*}$	0.20		6.05E+12			
18	$H^{*+*} \rightarrow ^{*+}H^{*}$	0.11		1.23E+13			
19	O*+*→*+O*	0.35		7.96E+12			
20	OH*+*→*+OH*	0.22		4.16E+13			

.

Table S3 Elementary processes included in the kMC simulation as well as corresponding kinetic parameters

for Ni₃Fe(111) surface

No	Flementary process	E (aV)	E (AV)	N (s-1)	N- (s-1)
1		$E_{a,f}(ev)$	$L_{a,r}(ev)$	v _{0,f} (S ⁺)	v _{0,r} (s ⁺)
1	$CO(g)^{+*} \leftrightarrow CO^{*}$	0	1.60	а	b
2	$H_2(g)+2*\leftrightarrow H^*+H^*$	0	0.92	с	b
3	CO*+*↔C*+O*	1.76	1.62	2.39E+13	5.81E+13
4	CO*+H*↔COH*+*	1.28	0.89	1.99E+13	1.50E+14
5	$COH^{*+*}\leftrightarrow C^{*}+OH^{*}$	1.17	2.20	1.91E+13	3.89E+13
6	CO*+H*↔HCO*+*	0.87	0.30	1.76E+13	4.75E+13
7	HCO*+*↔CH*+O*	0.66	1.10	1.10E+13	9.25E+12
8	$\mathrm{C}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\leftrightarrow\!\!\mathrm{C}\mathrm{H}^{*}\!\!+\!*$	0.77	1.07	4.83E+13	1.16E+14
9	$\mathrm{CH}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\leftrightarrow\!\!\mathrm{CH}_{2}\!\!-\!1^{*}\!\!+\!\!*$	0.63	0.37	5.18E+12	5.36E+12
10	CH_2 -1*+* \leftrightarrow *+ CH_2 *	0.29	0.65	2.21E+13	1.18E+13
11	$\mathrm{CH}_2^{*}\!\!+\!\!\mathrm{H}^*\!\!\leftrightarrow\!\!\mathrm{CH}_3^{*}\!\!+\!\!*$	0.32	0.75	1.49E+12	3.67E+12
12	$\mathrm{CH}_3^*\!\!+\!\!\mathrm{H}^*\!\!\leftrightarrow\!\!\mathrm{CH}_4(g)\!\!+\!\!2^*$	0.95	0.98	1.45E+13	d
13	$O^{*}+H^{*}\leftrightarrow OH^{*}+*$	0.94	1.32	1.03E+14	2.81E+13
14	$OH^{*}\!\!+\!H^{*}\!\!\leftrightarrow\!\!H_{2}O^{*}\!\!+\!^{*}$	1.53	0.83	9.63E+13	1.45E+13
15	$\text{OH*+OH*}{\leftrightarrow}\text{H}_2\text{O*+O*}$	0.74	0.44	1.87E+13	1.03E+13
16	$H_2O^* \rightarrow H_2O(g)^{+*}$	0.40		b	
17	$CO^{+}O^{-}O^{-}O_{2}(g)$	1.91	1.21	1.68E+12	
18	CO*+OH*↔COOH-cis*+*	1.49	0.11	7.93E+12	3.71E+13
19	COOH-cis*↔COOH-trans*	0.42	0.76	7.21E+12	1.55E+13
20	$COOH\text{-}trans^* {\rightarrow} CO_2(g) {+} H^*$	1.13	1.13	2.92E+13	
21	$\text{COOH-trans*+O*}{\rightarrow}\text{CO}_2(g){+}\text{OH*+*}$	0.22	0.35	6.50E+13	
22	$COOH\text{-}trans^{*}\text{+}OH^{*} \rightarrow CO_{2}(g)\text{+}H_{2}O^{*}\text{+}*$	0.29	0.12	1.33E+12	
23	CO*+*→*+CO*	0.28		1.00E+13	
24	$H^{*+*} \rightarrow^{*+} H^{*}$	0.21		2.34E+13	
25	O*+*→*+O*	0.38		9.73E+12	
26	OH*+*→*+OH*	0.47		1.01E+13	

Table S4 Elementary processes included in the kMC simulation as well as corresponding kinetic parameters

for Ni₃Fe(211)-AB surface

·

No.	Elementary process	$E_{\rm a,f}(\rm eV)$	$E_{\rm a,r}(\rm eV)$	$v_{0,f}(s^{-1})$	$v_{0,r}(s^{-1})$	
1	$CO(g)^{+*} \leftrightarrow CO^{*}$	0	1.66	а	b	
2	$H_2(g)+2*\leftrightarrow H*+H*$	0	0.90	c	b	
3	$CO^{+*}\leftrightarrow C^{+}O^{*}$	2.21	1.65	6.65E+12	6.42E+13	
4	CO*+H*↔COH*+*	1.37	0.92	1.60E+13	6.11E+13	
5	$COH^{*+*} \leftrightarrow C^{*+}OH^{*}$	1.08	1.94	1.64E+13	4.19E+13	
6	CO*+H*↔HCO*+*	0.71	0.21	1.41E+13	5.31E+13	
7	HCO*+*↔CH*+O*	1.10	1.59	8.24E+12	1.18E+13	
8	$\mathrm{C}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\leftrightarrow\!\!\mathrm{C}\mathrm{H}^{*}\!\!+\!*$	0.87	0.88	2.44E+13	3.70E+13	
9	$CH^{*}\!\!+\!\!H^{*}\!\!\leftrightarrow\!\!CH_{2^{}}\!1^{*+*}$	0.73	0.36	1.22E+13	2.63E+13	
10	$CH_2-1^{*+*}\leftrightarrow^{*+}CH_2^{*}$	0.37	0.35	2.01E+13	3.03E+12	
11	$CH_2^*+H^*\leftrightarrow CH_3^*+*$	0.33	0.83	2.77E+12	1.86E+12	
12	$\mathrm{CH}_3^{*}\!\!+\!\!\mathrm{H}^*\!\!\leftrightarrow\!\!\mathrm{CH}_4\!(g)\!\!+\!\!2^*$	0.92	1.07	6.76E+13	d	
13	O*+H*↔OH*+*	0.96	1.41	1.40E+14	9.43E+13	
14	$OH^{*}\!\!+\!H^{*}\!\!\leftrightarrow\!\!H_{2}O^{*}\!\!+\!^{*}$	1.50	1.00	3.60E+14	4.26E+13	
15	$\mathrm{OH}^{*}\!\!+\!\!\mathrm{OH}^{*}\!\!\leftrightarrow\!\!\mathrm{H}_{2}\mathrm{O}^{*}\!\!+\!\!\mathrm{O}^{*}$	0.85	0.38	2.13E+13	1.78E+13	
16	$H_2O^* \rightarrow H_2O(g)^{+*}$	0.22		b		
17	$CO^{+}O^{-}O^{-}O_2(g)$	2.02	1.21	2.40E+14		
18	CO*+OH*↔COOH-cis*+*	1.30	0.25	6.51E+12	2.71E+13	
19	COOH-cis*↔COOH-trans*	0.57	0.68	2.17E+13	7.01E+13	
20	$\text{COOH-trans*} \rightarrow \text{CO}_2(g) + \text{H*}$	1.01	1.08	1.77E+14		
21	$\text{COOH-trans*+O*}{\rightarrow}\text{CO}_2(g){+}\text{OH*+*}$	0.20	0.12	1.21E+13		
22	$COOH\text{-}trans^{*}\text{+}OH^{*} \rightarrow CO_{2}(g)\text{+}H_{2}O^{*}\text{+}*$	0.31	0.37	4.51E+12		
23	CO*+*→*+CO*	0.25		2.84E+12		
24	$H^{*+*} \rightarrow^{*+} H^{*}$	0.23		1.38E+13		
25	O*+*→*+O*	0.50		8.79E+12		
26	OH*+*→*+OH*	0.70		7.42E+13		

Table S5 Elementary processes included in the kMC simulation as well as corresponding kinetic parameters

for Ni₃Fe(211)-AA surface

Figure S1 The variation of coverage in simulation time at 100 microSec on Ni(211) at 673 K

Figure S2 The variation of coverage in simulation time at 100 microSec on Ni₃Fe(211AB) at 673K

Figure S3 The variation of coverage in simulation time at 100 microSec on Ni₃Fe(211AA) at 673 K

As can be seen from the figure, in a few microseconds, the coverage of each species has reached stability. The surface of Ni(211) is almost covered by CO, and the coverage of other intermediate species and H is very small. The surface of Ni₃Fe(211AB) and Ni₃Fe(211AA) is almost covered by CO and H, and the coverage of other intermediate species is very small. The figures indicate that the residence time of the intermediate is short, and the reaction system reaches stability at this time. The dissociation and hydrogenation of CO occur simultaneously on the catalyst surface, but the surface of Ni(211) is almost covered by CO, which is not conducive to hydrogenation reaction compared with Ni₃Fe(211AB) and Ni₃Fe(211AA).