Supporting Information

Bis-dianionic β-ketoiminato octalithium complex as a universal catalyst for hydroboration with broad scope

Yu Zheng,^a Xu Zhu,^b Xiaojuan Xu,^b Shuai Zhou,^b Wenguang Lu,^a and Mingqiang

Xue^{b*}

^aJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.

^bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: xuemingqiang@suda.edu.cn

Contents

I. General Experimental Information	S2
II. General Catalytic Procedure for Hydroboration	S2
III. Optimized Conditions	S3
IV. General Procedure for Gram-Scale Reaction	S3
V. Analytical Data of Hydroborated Products	S4
VI. NMR Spectra	S13
VII. References	S46

I. General Experimental Information

All manipulations were implemented by the Schlenk techniques under a dry argon atmosphere or in a glovebox under nitrogen atmosphere. Solvents of THF, toluene, ^{*n*}hexane, and 1,4-dioxane were dried and free of oxygen by refluxing over sodium/benzophenone and distilled prior to use. Pinacolborane (HBPin) was purchased from Bide and used without further purification. $CDCl_3$ and $DMSO-d_6$ were purchased from TCI and stored over activated 4Å molecular sieves. The liquid reagent used in the experiment is added calcium hydride to remove water. The solid reagent used in the experiment is drained under a vacuum pump and then flushed into the argon gas protection seal for backup. Mesitylene was used for the clarification of the yield of hydroboration products. ¹H and ${}^{13}C{}^{1}H$ spectra were recorded on Bruker AV-400 MHz, 101 MHz, respectively, and referenced to the resonances of the solvent used. Chemical shifts of the hydroboration products were reported as parts per million in δ scale using a residual solvent. Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), and coupling constant (J, Hz). The yields of hydroboration products were determined by ¹H NMR analysis calculating the integral area of the product characteristic hydrogen and mesitylene.

II. General Catalytic Procedure for Hydroboration

The catalytic reaction was carried out in a glovebox by selecting a 5 mL reaction bottle in which water and oxygen have been removed in advance; the catalyst complex 1 (1.5 mol%), ester (1 mmol), pinacol borane (2.2 mmol), THF (200 μ L), were added to the bottle in turn, and the reaction mixture was stirred at 60 °C for 2 hrs. After the reaction was complete, mesitylene (1 mmol) was added to the reaction bottle as the internal standard, and the reaction process was monitored by ¹H NMR. We determined the yield by judging the newly generated methylene and its ratio to the internal target on the spectrum. The procedure for other unsaturated substrates including aldehydes, ketones, imines, nitriles, carbonates, and amides was similar to that of esters. For aldehydes and ketones, the amount of catalyst and borane, solvent, reaction temperature, and time are respectively: complex 1 (0.01 mol%), HBPin (1.2 eq), neat, 25 °C, 10 min; for imines, complex 1 (1 mol%), HBPin (1.2 eq), THF (200 μ L), 60 °C, 2 hrs; for nitriles and carbonates, complex 1 (5 mol%), HBPin (3 eq), THF (200 μ L), 80 °C, 24 hrs.

III. Optimized Conditions

Ph	Ph +	HBpin Con	mplex 1 olvent	► 2 Ph	─ OBpin
1a	a				2a
Entry	Cat.	Sol.	HBpin	Temp	Yield
	(mol%)		(eq)	(°C)	$(\%)^{b}$
1	1	THF	2.1	30	89
2	none	neat	2.1	30	0
3	1	THF	2.0	30	85
4	1	THF	2.2	30	91
5	1	THF	2.3	30	91
6	1	THF	2.2	40	92
7	1	THF	2.2	60	94
8	1	THF	2.2	80	92
9	1	1,4-dioxan	2.2	60	53
		e			
10	1	<i>ⁿ</i> hexane	2.2	60	79
11	1	toluene	2.2	60	64
12	1	neat	2.2	60	80
13	1.5	THF	2.2	60	96
14	2	THF	2.2	60	96

Table S1 Optimized Conditions of the Catalytic Hydroboration of Esters.^a

^{*a*}Reaction conditions: benzyl benzoate **1a** (1.0 mmol), HBpin, complex **1** and solvent (0.2 mL), 2 h. ^{*b*}Yield is based on ¹H NMR (400 MHz) with mesitylene as an internal standard. THF = tetrahydrofuran.

IV. General Procedure for Gram-Scale Reaction

The catalytic reaction was carried out in a glovebox at a 5 mL reaction bottle in which water and oxygen have been removed in advance. The catalyst complex 1 (1.5 mol%), benzyl benzoate (15 mmol), pinacol borane (2.2 eq), and THF (1 mL) were added to the bottle in turn, and the reaction mixture was stirred at 60 °C for 2 h. After the reaction was complete, the bottle with reaction mixture was exposed to air and was hydrolyzed with silica gel and methanol at 50 °C for 6 h. Then the mixed solution was extracted with diethyl ether (30 mL×3). The combined organic fractions were dried over Na₂SO₄ and the purification was carried out by column chromatography on

silica gel eluting with ethyl acetate and petroleum ether (EA/PE = 1: 5) to afford pure alcohol products.

V. Analytical Data of Hydroborated Products

Ph OBpin

2-(Benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2a)[S1]

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.23 (m, 10H, Ar*H*), 4.92 (s, 4H, OC*H*₂), 1.26 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 137.7 (Ar*C*), 128.3 (Ar*C*H), 127.4 (Ar*C*H), 126.9 (Ar*C*H), 83.0 (OB*pin*), 66.7 (OCH₂), 24.6 (CH₃, OB*pin*).

2-((4-Chlorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b)^[S2] ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 8H, Ar*H*), 4.88 (s, 4H, OC*H*₂), 1.26 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 135.2 (Ar*C*), 130.6 (Ar*C*H), 125.9 (Ar*C*H), 125.6 (Ar*C*), 80.6 (OB*pin*), 63.5 (OCH₂), 22.1 (*C*H₃, OB*pin*).

2-((4-Bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c)^[S3] ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 4H, Ar*H*), 7.22 (d, *J* = 8.5 Hz, 4H, Ar*H*), 4.87 (s, 4H, OC*H*₂), 1.26 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 138.3 (ArC), 131.4 (ArCH), 128.4 (ArCH), 121.2 (ArC), 83.0 (OB*pin*), 65.9 (OCH₂), 24.6 (CH₃, OB*pin*).

2-Ethoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)^[S4]

¹H NMR (400 MHz, CDCl₃) δ 3.90 (q, J = 7.0 Hz, 2H, CH₂), 1.25 (s, 12H, OB*pin*), 1.22 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 60.6 (OCH₂), 24.6 (CH₃, OB*pin*), 17.2 (CH₃).

OBpin

4,4,5,5-Tetramethyl-2-propoxy-1,3,2-dioxaborolane (2e)[S6]

¹H NMR (400 MHz, CDCl₃) δ 3.79 (t, *J* = 6.6 Hz, 2H, CH₂C*H*₂OBpin), 1.58 (m, 2H, CH₃C*H*₂CH₂), 1.24 (s, 12H, OB*pin*), 0.90 (t, *J* = 7.4 Hz, 3H, C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 66.5 (OCH₂CH₂), 24.7 (OCH₂CH₂), 24.6 (CH₃, OB*pin*), 10.1 (*C*H₃).

OBpin

2-Isobutoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f) [S4]

¹H NMR (400 MHz, CDCl₃) δ 3.61 (d, *J* = 6.5 Hz, 2H, C*H*₂OBpin), 1.81–1.75 (m, 1H, C*H*(CH₃)₂), 1.24 (s, 12H, OB*pin*), 0.89 (d, *J* = 6.7 Hz, 6H, CH(C*H*₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 71.4 (OCH₂), 29.8 (*C*(CH₃)₂), 24.6 (*C*H₃, OB*pin*), 18.7 (*C*H₃).

Ph____OBpin

4,4,5,5-Tetramethyl-2-phenethoxy-1,3,2-dioxaborolane (2g)[S5]

¹H NMR (400 MHz, CDCl₃) δ 7.29–7.16 (m, 5H, ArC*H*), 4.05 (t, *J* = 7.0 Hz, 2H, OC*H*₂), 2.87 (t, *J* = 6.9 Hz, 2H, ArC*H*₂), 1.18 (s, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 138.5 (ArC), 129.1 (ArCH), 128.3 (ArCH), 126.2 (ArCH), 82.6 (CH₃CH₂OB*pin*), 65.7 (OCH₂), 38.1 (CH₂CH₂OB*pin*), 24.5 (CH₃, OB*pin*).

CH₃OBpin

2-Methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h)[S5]

¹H NMR (400 MHz, CDCl₃) δ 3.59 (s, 3H, CH₃OBpin), 1.24 (s, 12H, OBpin). ¹³C NMR (101 MHz, CDCl₃) δ 82.7 (OBpin), 52.6 (OCH₃), 24.6 (CH₃, OBpin).

P OBpin

2-((4-Fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i)^[S6] ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 2H, ArC*H*), 7.00 (t, *J* = 8.7 Hz, 2H, ArC*H*), 4.87 (s, 2H, OC*H*₂), 1.25 (s, 12H, OB*pin*).¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, *J* = 245.1 Hz, ArC-F), 135.0 (d, *J* = 3.0 Hz, ArC-OCH₂), 128.6 (d, *J* = 8.1 Hz, ArCH), 115.0 (d, *J* = 21.4 Hz, ArC), 83.0 (OB*pin*), 66.0 (OCH₂), 24.5 (CH₃, OB*pin*).

2-((4-Iodobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j)[S7]

¹H NMR (400 MHz, CDCl₃) δ 7.45 (m, 2H, ArC*H*), 7.21 (d, *J* = 8.5 Hz, 2H, ArC*H*), 4.86 (s, 2H, OC*H*₂), 1.25 (s, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 138.2 (Ar*C*), 131.3 (ArCH), 128.4 (Ar*C*H), 121.2 (Ar*C*), 82.8 (OB*pin*), 66.0 (OCH₂), 24.6 (CH₃, OB*pin*).

4,4,5,5-Tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (2k)^[S7]

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.8 Hz, 2H, ArC*H*), 7.49 (d, *J* = 8.9 Hz, 2H, ArC*H*), 5.01 (s, 2H, OC*H*₂), 1.24 (s, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 147.3 (ArC), 146.6 (ArC), 126.8 (ArCH), 123.6 (ArCH), 82.8 (OB*pin*), 65.6 (OCH₂), 24.6 (CH₃, OB*pin*).

4-(((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile (2l)^[S7] ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.3 Hz, 2H, ArC*H*), 7.42 (d, *J* = 8.1 Hz, 2H, ArC*H*), 4.95 (s, 2H, OC*H*₂), 1.24 (s, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 144.6 (Ar*C*), 132.1 (Ar*C*H),126.8 (Ar*C*H), 118.8 (Ar*C*), 111.1 (Ar*C*), 82.7 (OB*pin*), 65.7 (OCH₂), 24.6 (*C*H₃, OB*pin*).

4,4,5,5-Tetramethyl-2-((4-methylbenzyl)oxy)-1,3,2-dioxaborolane (2m)^[S7]

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2H, ArC*H*), 7.16 (d, *J* = 7.9 Hz, 2H, ArC*H*), 4.80 (s, 2H, OC*H*₂), 2.24 (s, 3H, ArC*H*₃), 1.17 (d, *J* = 1.7 Hz, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 137.0 (*Ar*CH₃), 136.3 (ArC), 129.0 (ArCH), 126.9 (ArCH), 82.9 (OB*pin*), 66.6 (OCH₂), 21.2 (ArCH₃), 24.6 (CH₃, OB*pin*).

2-((4-Methoxybenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2n)^[S7] ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J* = 8.7, 2.5 Hz, 2H), 6.76 (dd, *J* = 8.8, 2.6 Hz, 2H), 4.74 (s, 2H), 3.68 (s, 3H), 1.16 (d, *J* = 2.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9 (ArC), 131.3 (ArC), 128.3 (ArCH), 113.4 (ArCH), 82.6 (OB*pin*), 66.2 (CH₂OB*pin*), 54.9 (*OC*H₃), 24.4 (CH₃, OB*pin*).

4,4,5,5-Tetramethyl-2-((4-((4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)oxy)pentyl)oxy) -1,3,2- dioxaborolane (20)^[S8]

¹H NMR (400 MHz, CDCl₃) δ 4.17 (m, 1H, CH₃C*H*), 3.93–3.79 (m, 2H, OC*H*₂), 1.71–1.59 (m, 2H, C*H*₂), 1.49–1.44 (m, 2H, C*H*₂), 1.26–1.23 (m, 24H, OB*pin*), 1.18 (d, *J* = 6.2 Hz, 3H, C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 82.5 (OB*pin*), 70.6 (CH₃CHOBpin), 64.8 (CH₂CH₂OBpin), 34.1 (CH₂), 27.5 (CH₂), 24.6 (CH₃, OB*pin*), 24.6 (CH₃, OB*pin*), 22.6 (CH₃CH).

BpinO

1,5-Bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)pentane (2p)^[S8] ¹H NMR (400 MHz, CDCl₃) δ 3.82 (t, *J* = 6.6 Hz, 4H, OC*H*₂), 1.58 (dt, *J* = 14.6, 6.8 Hz, 4H, C*H*₂), 1.43–1.36 (m, 2H, C*H*₂), 1.24 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 64.8 (*C*H₂OBpin), 31.1 (*C*H₂CH₂OBpin), 24.6 (*C*H₃, OB*pin*), 21.2 (*C*H₂CH₂CH₂OBpin).

1,2-Bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzene (2q)^[S8] ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 5.5, 3.5 Hz, 2H, ArC*H*), 7.29–7.24 (m, 2H, ArC*H*), 4.98 (s, 4H, OC*H*₂), 1.25 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ136.4 (*C*-CH₂, Ar*C*), 127.2 (ArCH), 126.9 (Ar*C*H), 82.9 (OB*pin*), 64.1 (*C*H₂, OCH₂), 24.6 (*C*H₃, OB*pin*).

BpinOOBpin

1,6-Bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)hexane (2r)^[S9] ¹H NMR (400 MHz, CDCl₃) δ 3.81 (t, *J* = 6.5 Hz, 4H, C*H*₂OBpin), 1.54 (q, *J* = 6.3 Hz, 4H, C*H*₂), 1.34 (dt, *J* = 7.3, 3.7 Hz, 4H, C*H*₂), 1.23 (s, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 82.6 (OB*pin*), 64.8 (OCH₂), 31.4 (CH₂), 25.3 (CH₂), 24.6 (CH₃, OB*pin*).

OBpin

4,4,5,5-Tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane (2s)[S10]

¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 17.4, 7.2 Hz, 4H, Ar*H*), 7.15 (t, J = 7.1 Hz, 1H, Ar*H*), 5.16 (q, J = 6.4 Hz, 1H, CHOBPin), 1.41 (d, J = 6.5 Hz, 3H, CH₃CHOBPin), 1.14 (d, J = 12.0 Hz, 12H, OBpin). ¹³C NMR (101 MHz, CDCl₃) δ 144.6 (Ar*C*), 128.2 (Ar*C*H), 127.1 (Ar*C*H), 125.3 (Ar*C*H), 82.7 (OBpin), 72.6 (CHOBPin), 25.4 (CH₃CHOBPin), 24.6 (CH₃, OBpin), 24.5 (CH₃, OBpin).

2-(Benzhydryloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2t)[S10]

¹H NMR (400 MHz, CDCl₃) δ 7.31–7.26 (m, 4H, Ar*H*), 7.20–7.15 (m, 4H, Ar*H*), 7.12–7.09 (m, 2H, Ar*H*), 6.09 (s, 1H, C*H*OBPin), 1.08 (s, 12H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 143.2 (Ar*C*), 128.3 (Ar*C*H), 127.3 (Ar*C*H), 126.5 (Ar*C*H), 83.0 (OB*pin*), 77.9 (*C*HOBPin), 24.5 (*C*H₃, OB*pin*).

BpinO____OBpin

1,2-Bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethane (2u)^[S11] ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 4H, OC*H*₂), 1.17 (d, *J* = 1.3 Hz, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 82.5 (OB*pin*), 64.9 (OCH₂), 24.4 (*C*H₃, OB*pin*).

BpinO OBpin

1,3-Bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)propane (2v)^[S11] ¹H NMR (400 MHz, CDCl₃) δ 3.85 (t, *J* = 6.2 Hz, 4H, OC*H*₂), 1.87–1.81 (m, 2H, OCH₂C*H*₂), 1.20-1.16 (m, 24H, OB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 82.7 (OB*pin*), 61.4 (OCH₂), 33.2 (OCH₂CH₂), 24.5 (CH₃, OB*pin*).

N-Benzyl-4,4,5,5-tetramethyl-*N*-phenyl-1,3,2-dioxaborolan-2-amine (5a)^[S12] ¹H NMR (400 MHz, CDCl₃) δ 7.20–6.98 (m, 10H, Ar*H*), 4.59 (s, 2H, C*H*₂NBPin), 1.19 (s, 12H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 146.3 (Ar*C*), 140.5 (Ar*C*), 128.5 (Ar*C*H), 128.3 (Ar*C*H), 126.4 (Ar*C*H), 121.3 (Ar*C*H), 120.5 (Ar*C*H), 82.9 (NB*pin*), 51.2 (*C*H₂NBPin), 24.6 (*C*H₃, NB*pin*).

F N^{Ph} Bpin

N-(4-Fluorobenzyl)-4,4,5,5-tetramethyl-*N*-phenyl-1,3,2-dioxaborolan-2-amine (5b)^[S12]

¹H NMR (400 MHz, CDCl₃) δ 7.08–6.96 (m, 6H, Ar*H*), 6.79–6.68 (m, 3H, Ar*H*), 4.50 (s, 2H, C*H*₂NB*pin*), 1.13 (s, 12H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 162.9

(ArC-F), 160.4 (ArC-F), 146.0 (ArC), 136.2 (ArC), 128.5(ArCH), 128.0 (ArCH), 126.9 (ArCH), 121.4 (ArCH), 120.7 (ArCH), 115.2 (ArCH), 114.9 (ArCH), 82.9 (NBpin), 50.4 (CH₂NBPin), 24.5 (CH₃, NBpin).

N-(4-Methoxybenzyl)-4,4,5,5-tetramethyl-*N*-phenyl-1,3,2-dioxaborolan-2-amine (5c)^[S12]

¹H NMR (400 MHz, CDCl₃) δ 7.13–7.02 (m, 7H, Ar*H*), 6.69 (d, *J* = 8.7 Hz, 2H, Ar*H*), 4.52 (s, 2H, C*H*₂NBPin), 3.61 (s, 3H, OC*H*₃), 1.18 (s, 12H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (ArC), 146.3 (ArC), 132.5 (ArC), 128.5 (ArCH), 127.6 (ArCH), 121.3 (ArCH), 120.7 (ArCH), 113.8 (ArCH), 82.9 (NB*pin*) , 55.1 (OCH₃), 50.6 (CH₂NBPin), 24.6 (CH₃, NB*pin*).

N-(4-Chlorophenyl)-*N*-ethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-amine (5d)^[S13]

¹H NMR (400 MHz, DMSO- d_6) δ 7.06 (d, J = 8.8 Hz, 2H, ArH), 6.54 (d, J = 8.4 Hz, 2H, ArH), 3.04–2.95 (m, 2H, NCH₂CH₃), 1.16 (s, 12H, NB*Pin*), 0.93 (d, 3H, NCH₂CH₃). ¹³C NMR (101 MHz, DMSO- d_6) δ 148.3 (ArC-Cl), 128.9 (ArC), 119.0 (ArCH), 113.6 (ArCH), 81.7 (NB*pin*), 37.7 (NCH₂CH₃), 24.9 (CH₃, NB*pin*), 14.6 (NCH₂CH₃).

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)azepane (5e)^[S13]

¹H NMR (400 MHz, DMSO-*d*₆) δ 2.86–2.80 (m, 4H), 1.62 (br, 4H), 1.55 (br, 4H), 1.15 (s, 12H, NB*pin*). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 81.63 (NB*pin*), 46.78

(CH₂NBPin), 31.00 (CH₂CH₂-R), 27.13 (CH₂CH₂-R), 24.86 (CH₃, NB*pin*), 24.76 (CH₃, NB*pin*).

Methyl

4-((phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)amino)methyl)benzoate (5f)^[S12]

¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H, Ar*H*), 7.87 (d, *J* = 7.6 Hz, 1H, Ar*H*), 7.46– 7.28 (m, 4H, Ar*H*), 7.14 (dd, *J* = 37.6, 7.3 Hz, 3H, Ar*H*), 4.93 (d, *J* = 34.2 Hz, 2H, C*H*₂NBPin), 3.58 (s, 3H, COOC*H*₃), 1.25-1.24 (m, 12H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 165.00, 152.03, 147.83, 129.87, 126.12, 125.92, 125.10, 125.05, 121.96, 116.79, 79.74, 56.60, 20.55.

N-Benzyl-4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3, 2-dioxaborolan-2-amine (7a)^[S14]

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.4 Hz, 2H, Ar*H*), 7.15 (t, J = 7.4 Hz, 2H, Ar*H*), 7.06 (t, J = 7.1 Hz, 1H, Ar*H*), 4.15 (s, 2H, C*H*₂), 1.11 (s, 24H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 143.1 (Ar*C*), 127.8 (Ar*C*H), 127.5 (Ar*C*H), 126.1 (Ar*C*H), 82.3 (NB*pin*), 47.3 (*C*H₂), 24.5 (*C*H₃, NB*pin*).

N-(4-Bromobenzyl)-4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborola n-2-yl)-1,3,2-dioxaborolan-2-amine (7b)^[S14]

¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.18 (d, *J* = 8.4 Hz, 2H, Ar*H*), 4.16 (s, 2H, C*H*₂), 1.19 (s, 24H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 142.1 (Ar*C*), 130.8 (Ar*C*), 129.3 (Ar*C*H) , 119.8 (Ar*C*H) , 82.4 (Nb*pin*), 46.7 (*C*H₂), 24.5 (*C*H₃, NB*pin*).

N-(4-Methoxybenzyl)-4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)-1,3,2-dioxaborolan-2-amine (7c)^[S14]

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 123.2 Hz, 2H, Ar*H*), 6.84 (d, *J* = 32.2 Hz, 2H, Ar*H*), 3.78 (s, 2H, C*H*₂NBPin), 3.71 (s, 3H, OC*H*₃), 1.15 (s, 24H, NB*pin*). ¹³C NMR (101 MHz, CDCl₃) δ 159.0 (Ar*C*), 133.9 (Ar*C*), 129.0 (Ar*C*H), 114.8 (Ar*C*H), 114.1 (Ar*C*H), 82.3 (NB*pin*), 55.5 (OCH₃), 44.9 (CH₂NBPin), 24.6 (CH₃, NB*pin*).

VI. NMR Spectra

¹³C NMR spectrum of product 2d, 2e (101 MHZ, CDCl₃)

¹³C NMR spectrum of product **2g**, **2d** (101 MHZ, CDCl₃)

¹³C NMR spectrum of product **2j**, **2h** (101 MHZ, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of product **20** (101 MHZ, CDCl₃)

¹³C NMR spectrum of product **2p** (101 MHZ, CDCl₃)

¹³C NMR spectrum of product **2q** (101 MHZ, CDCl₃)

 √137.67 √136.43 √136.49 √127.47 √126.89 	82.93 77.41 77.09 76.77	- 64.09 - 64.09	ン25.61 ン24.61 、21.18
CCO ^{B-O} b-C	`		

f1 (ppm) . 40

¹H NMR spectrum of product **2v**, **2h** (400 MHZ, CDCl₃)

¹³C NMR spectrum of product **2v**, **2h** (101 MHZ, CDCl₃)

¹³C NMR spectrum of product **5b** (101 MHZ, CDCl₃)

fl (ppm) 105 100

¹³C NMR spectrum of product 7a (101 MHZ, CDCl₃)

VII. References

- S1. X. Xu, D. Yan, Z. Zhu, Z. Kang, Y. Yao, Q. Shen, M. Xue, ACS Omega 2019, 4, 6775–6783.
- S2. K. M. Sharma, M. Ansari, P. Mahawar, G. Rajaraman, S. Nagendran, *Dalton Trans.* 2019, 48, 664–672.
- S3. S. Chen, D. Yan, M. Xue, Y. Hong, Y. Yao, Q. Shen, Org. Lett. 2017, 19, 3382– 3385.
- S4. C. J. Barger, A. Motta, L. V. Weidner, L. T. Lohr, J. T. Marks, ACS Catal. 2019, 9, 9015–9024.
- S5. K. M. Barman, K. Das, B. Maji, J. Org. Chem. 2019, 84, 1570–1579.
- S6. Z. Zhu, X. Wu, X. Xu, Z. Wu, M. Xue, Y. Yao, Q. Shen, X. Bao, J. Org. Chem. 2018, 83, 10677–10683.
- S7. A. Harinath, J. Bhattacharjee, T. K. Panda, Chem. Commun. 2019, 55, 1386– 1389.
- S8. M. K. Barman, A. Baishya, S. Nembenna, Dalton Trans. 2017, 46, 4152–4156.
- S9. M. Kobylarski, C. J.Berthet, T. Cantat, Chem. Commun. 2022, 58, 2830-2833.
- S10. H. Zeng, J. Wu, S. Li, C. Hui, A. Ta, S. Y. Cheng, S. Zheng, G. Zhang, Org. Lett. 2019, 21, 401–406.
- S11. X. Xu, Z. Kang, D. Yan, M. Xue, Chin. J. Chem. 2019, 37, 1142-1146.
- S12. D. Yan, X. Wu, J. Xiao, Z. Zhu, X. Xu, X. Bao, Y. Yao, Q. Shen, M. Xue, Org. Chem. Front., 2019, 6, 648–653.
- S13. M. K. Bisai, K. Gour, T. Das, K. Vank, S. S. Sen, *Dalton.Trans.* 2021, 50, 2354– 2358.
- S14. A. Harinath, J. Bhattacharjee, T. K. Panda, *Adv. Synth. Catal.* **2019**, *361*, 850–857.