Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

Strontium peroxide as a Potential Photocatalyst: Rapid Degradation of Organic and Pharmaceutical Pollutants

Dhakshnamoorthi Harikaran, Vijayaraghavan R*

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore -632 014, India.

*Corresponding author: rvijayaraghavan@vit.ac.in

Fig. S1 (a) Degradation studies of Methyl orange (10 ppm) (b) Methylene blue (10 ppm)

Fig. S2.(a) Hydrogen peroxide (H_2O_2) (b) hydroxyl radicals (•OH) release profile plot

Table S1	Comparison	of photocatalytic	activity by	various	photocatalyst	ts for the	degradation
			of RhB.				

	Catalyst	RhB	Degradation		
Photocatalyst	Amount	concentration	percentage (minutes)	Kinetics	Ref.
	(g/L)	(ppm)		(x 10 ⁻² min ⁻¹)	
SrO ₂	0.6	10	97 % (15)	24.8	This
					work
0.1% Ba/ZnO	0.35	4	98 % (60)	3.6	1
5 % Se/ZnO	0.4	10	98 % (150)	-	2
Ag/ZnO/AgO/Ti	0.3	10	99 % (100)	2.3	3
O_2					
$g-C_3N_4$	0.8	10	100 % (70)	-	4
nanosheet					
h-BN/g-C ₃ N ₄	0.5	20	92 % (180)	7.3	5
LDH@Bi2WO6	2	10	98 % (90)	-	6
Au/ZnO	0.05	10	95 % (180)	2.4	7
NiO/BiOI	0.08	5	96 % (90)	5.7	8
2D/2D	0.1	5	98 % (40)	8.0	9
BiMoO ₆ /g-C ₃ N ₄					

$TiO_2/W_{18}O_{49}$	0.6	10	82 % (60)	2.6	10
----------------------	-----	----	-----------	-----	----

	Catalyst	RhB	Degradation		
Photocatalyst	Amount	concentration	percentage (minutes)	Kinetics	Ref.
	(g/L)	(ppm)		(x 10 ⁻² min ⁻¹)	
SrO ₂	0.6	10	96 % (105)	2.3	This
					work
g-	0.1	10	97 % (120)	3	11
C ₃ N ₄ /Ag@CoW					
O_4					
Fe ₃ O ₄ /Bi ₂ O ₂ (OH	1	10	98 % (120)	-	12
)(NO ₃)					
g-C ₃ N ₄ /ZrO ₂	1	10	94 % (90)	2.9	13
TiO ₂ /Bi ₂ O ₃ -	1	5	99 % (120)	4.0	14
gC_3N_4					
α - Bi ₂ O ₃	0.75	10	79 % (180)	1.3	15

Table S2 Comparison of various photocatalyst for sun-light degradation of RhB

Fig. S3 (a&b) HR-MS spectra of the photo-intermediates for the RhB degradation

PI	Compound Structure	ECOSAR	Acute toxicity (m		ng/L)	Chro	ronic toxicity (mg/L)	
		classification	Fish (LC ₅₀)	Daphnid (LC ₅₀)	Green algae (EC ₅₀)	Fish	Daphnid	Green algae
РІ- 1	H ₃ C H ₃ C N H ₃ C N CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Vinal/ allyl/ propargyl ethers	1090	3550	2720	73.2	353	1640
	Chemical formula: $C_{28}H_{31}N_2O_3^+$							
PI-2	H_3C , N , CH_3 H_3C , N , CH_3 $Chemical formula: C_{27}H_{29}N_2O_3^+$	Vinal/ allyl/ propargyl ethers	1990	7810	6290	153	778	3340
	m/7: 429							
PI- 3	$\begin{array}{c} H_{3}C\\ H_{3}C\\ H_{3}C\\ H_{3}C\\ H_{3}\\ H_{3}\\ H_{3}C\\ H_{3}\\ H_{$	Vinal/ allyl/ propargyl ethers	7170	41300	36900	724	41300	15000
	m/z: 400							
PI- 4	H ₃ C CH ₃ H ₃ C N CH ₃ H ₃ C N CH ₃	Vinal/ allyl/ propargyl ethers	53.9	148	109	3.20	14.7	73.9
	Chemical formula: C ₂₇ H ₃₁ N ₂ O ⁺							
	m/z: 399							
PI- 5	H ₃ C N CH ₃	Aliphatic amines	0.539	0.094	0.037	0.010	0.011	0.016

Table S3 ECOSAR software results for acute and chronic toxicity of RhB and its photo

 degradation intermediates towards using three aquatic organisms

Very toxic: $LC_{50}/EC_{50}/ChV \le 1$;

Toxic: $10 \ge LC_{50}/EC_{50}/ChV > 1;$

Harmful: $100 \ge LC_{50}/EC_{50}/ChV > 10;$

Not harmful: $LC_{50}/EC_{50}/ChV > 100$.

Time	Adsorption of pollutants (%)					
	MB	МО	MOX	RhB		
0	0	0	0	0		
30	9.1	4.5	5.5	8.5		
60	10.2	4.4	6.5	9.5		
90	10.9	4.6	7.0	10.3		
120	10.9	5.0	7.5	10.3		

Table S4 Comparison of adsorption studies using various pollutants

Fig. S4 Adsorption-desorption studies of (a) methyl orange (b) moxifloxacin (c) rhodamine B and (d) methylene blue

Fig. S5 Degradation efficiency for recyclability test of (a) methyl orange (b) moxifloxacin (c) rhodamine B and (d) methylene blue and (e) XRD pattern of SrO₂ photocatalyst before and after treatment

References

- 1 B. Shirdel and M. A. Behnajady, J. Mol. Liq., 2020, **315**, 113633.
- S. Kumar, S. K. Sharma, R. D. Kaushik and L. P. Purohit, *Mater. Today Chem.*, 2021, 20, 100464.
- 3 H. Bian, Z. Zhang, X. Xu, Y. Gao and T. Wang, *Phys. E Low-Dimensional Syst. Nanostructures*, 2020, **124**, 114236.
- 4 Q. Lin, L. Li, S. Liang, M. Liu, J. Bi and L. Wu, *Appl. Catal. B Environ.*, 2015, **163**, 135–142.
- L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang and H. Wang, *Appl. Catal. B Environ.*, 2018, 221, 715–725.
- W. E. O. Campos, A. S. C. Lopes, W. R. Monteiro, G. N. R. Filho, F. X. Nobre, P. T. S. Luz, L. A. S. Nascimento, C. E. F. Costa, W. F. Monteiro, M. O. Vieira and J. R. Zamian, *React. Kinet. Mech. Catal.*, 2020, 131, 505–524.
- 7 M. Ahmad, W. Rehman, M. M. Khan, M. T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab and F. Menaa, J. Environ. Chem. Eng., 2021, 9, 104725.
- 8 X. Hu, G. Wang, J. Wang, Z. Hu and Y. Su, Appl. Surf. Sci., 2020, 511, 145499.
- 9 Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan and H. Shi, *J. Mater. Sci. Technol.*, 2020, 56, 216–226.
- R. Wang, J. Shen, W. Zhang, Q. Liu, M. Zhang, Zulfiqar and H. Tang, *Ceram. Int.*, 2020, 46, 23–30.
- H. Ashiq, N. Nadeem, A. Mansha, J. Iqbal, M. Yaseen, M. Zahid and I. Shahid, J. Phys. Chem. Solids, 2022, 161, 110437.
- R. Dulyasucharit, S. Wongkasemjit, S. Nanan, O. Intharaksa and C. Masingboon, J. Solid State Chem., 2023, 319, 123784.
- 13 S. Chand and A. Mondal, *Ceram. Int.*, 2023, **49**, 5419–5430.
- H. xia Jing, Y. lin Gao, L. xiang Li, X. Wang, W. jun Pei and X. feng Yang, J. Clust.
 Sci., 2023, 34, 1347–1354.
- 15 G. Gupta, M. Kaur, S. K. Kansal, A. Umar and A. A. Ibrahim, Ceram. Int., 2022, 48,

29580-29588.