Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Enhancing high-temperature storage performance for the commercial lithium-ion battery via an effective additive strategy

Weigang Liu^a, Shuai Gao^a, Jingqiang Zheng^a, Zhi Zhang^{a,c,f*}, Jiahao Gu^a, Zhiyong

Chen^c, Hao Jiang^c, Bo Hong^{a,d,e}, Jie Li^{a,d,e}, Xinming Fan^{a,b*}

a School of Metallurgy and Environment, Central South University, Changsha, 410083,

PR China

b Powder Metallurgy Research Institute, Central South University, Changsha 410083, Hunan, China

c Guangdong Mic-power New Energy Co., Ltd, Huizhou, 516000, PR China

d Engineering Research Centre of Advanced Battery Materials, The Ministry of Education, Changsha 410083, Hunan, China

e Hunan Provincial Key Laboratory of Value-added Metallurgy, Changsha 410083, Hunan, China

f Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.

This file includes:

Figure S1-4

Tables S1-8

	Main so	lvents (100%)		Lithium salt	Additives (Quality ratio)
Ethylene carbonate	Propylene carbonate	Propyl phenylacetate	Ethyl propionate	LiPF ₆	MMDS
(EC)	(PC)	(PP)			
30%	10%	50%	10%	1.2mol/L	0%
30%	10%	50%	10%	1.2mol/L	0.5%
30%	10%	50%	10%	1.2mol/L	1%
30%	10%	50%	10%	1.2mol/L	1.5%

Table S1 Formulation of STD and after addition to STD

ratio	Voltag	Initial	Storage	Storage	Voltag	Retained	Recovered	Capacity	Capacity
Tutio	e	capacity	capacity	time	e	capacity	capacity	retention	recovery
(%)	(V)	(mAh)	(mAh)	(month)	(V)	(mAh)	(mAh)	(%)	(%)
STD	4.187	61.9	61.9		4.137	54.2	59.6	87.56	96.28
0.5	4.185	67.4	67.4	1	4.126	59.5	64.4	88.28	95.55
1.0	4.185	66.7	66.7	-	4.126	59.4	64.5	89.06	96.70
1.5	4.185	67.5	67.5		4.185	59.4	64.3	88.00	95.26
STD	4.19	62.3	62.3		4.114	52.5	58.1	84.27	93.26
0.5	4.185	67.4	67.4	2	4.108	56.9	63.2	84.42	93.77
1.0	4.185	67.2	67.2	-	4.108	56.7	63.1	84.78	93.90
1.5	4.185	67.3	67.3		4.108	56.6	62.9	84.10	93.46
STD	4.188	60.5	60.5		4.095	47.2	54.8	78.02	90.58
0.5	4.185	67.2	67.2	3	4.09	54.1	62.0	80.51	92.26
1.0	4.185	67.4	67.4	5	4.093	54.7	62.4	81.16	92.58
1.5	4.185	66.7	66.7		4.093	53.8	61.2	80.66	91.75

 Table S2 Electrical performance data from different mass ratios of MMDS which are added to the

 STD after storage under 100%SOC

Ratio	Voltag e	Initial capacity	Storage capacity	Storage time	Voltag e	Retained capacity	Recovered capacity	Capacity retention	Capacity recovery
(%)	(V)	(mAh)	(mAh)	(month)	(V)	(mAh)	(mAh)	(%)	(%)
STD	4.187	61.9	61.9		4.137	54.2	59.6	87.56	96.28
0.5	4.185	67.4	67.4	1 month	4.126	59.5	64.4	88.28	95.55
1.0	4.185	66.7	66.7	1 monui	4.126	59.4	64.5	89.06	96.70
1.5	4.185	67.5	67.5		4.185	59.4	64.3	88.00	95.26
STD	4.19	62.3	62.3		4.114	52.5	58.1	84.27	93.26
0.5	4.185	67.4	67.4	2 months	4.108	56.9	63.2	84.42	93.77
1.0	4.185	67.2	67.2	2 months	4.108	56.7	63.1	84.38	93.90
1.5	4.185	67.3	67.3		4.108	56.6	62.9	84.10	93.46
STD	4.188	60.5	60.5		4.0948	47.2	54.8	78.02	90.58
0.5	4.185	67.2	67.2	3 months	4.09	54.1	62.0	80.51	92.26
1.0	4.185	67.4	67.4	5 monuis	4.093	54.7	62.4	81.16	92.58
1.5	4.185	66.7	66.7		4.0927	53.8	61.2	80.66	91.75

 Table S3 Electrical performance data from different mass ratios of MMDS which are added to the

 STD after storage under 30%SOC

Electrolyte	Initial	Capacity value	Coulombic efficiency	Capacity retention
	capacity	after cycling	(%)	(%)
STD	71.6	65.0	99.98	90.78
1% MMDS	71.6	66.4	99.99	92.74

Table S4 Battery performance with the STD and 1% MMDS after 900 cycles.

Initial	Storage			Storage			Capacity	Capacity
capacity	capacity	SOC	Electrolvte	time	Retained	Recovered	retention	recovery
					capacity/mAh	capacity/mAh	change	change
(mAh)	(mAh)			(month)			ratio	ratio
61.9	61.9			1	54.2	59.6	87.56%	96.28%
62.3	62.3		STD	2	52.5	58.1	84.27%	93.26%
60.5	60.5	100%		3	47.2	54.2	78.02%	89.59%
66.7	66.7	10070		1	59.4	64.5	89.06%	96.70%
67.2	67.2		1%MMDS	2	57.9	63.3	86.16%	94.20%
67.4	67.4			3	54.7	62.4	81.16%	92.58%
62.1	18.6			1	15	60	94.20%	96.62%
65.4	19.6		STD	2	12.3	61.7	88.84%	94.34%
62.8	18.8			3	8.7	56.8	83.92%	90.45%
67.4	20.1	30%		1	16.6	65.7	94.81%	97.48%
67.4	20.1		1%MMDS	2	14.1	64.5	91.10%	95.70%
66.9	20.1			3	11	62.5	86.40%	93.42%

Table S5 Electrical performance data of the batteries with and without MMDS additive

Samples	$R_s(\Omega)$	$R_f(\Omega)$	$R_{ct}(\Omega)$
STD-30%SOC	0.38	0.572	1.19
STD-100%SOC	0.483	0.528	1.13
1% MMDS-30% SOC	0.348	0.622	1.81
1% MMDS -100% SOC	0.436	0.607	1.72

Table S6. Data of EIS of 30%SOC and 100%SOC stored for 3 months of the batteries

Figure S1 (a,b) Scanning electron microscopy of separator in 1µm and 50 µm under 30%SOC stored for 3 months in STD. (c,d) SEM of separator in 1µm and 50 µm under 30%SOC stored for 3 months after addition to STD. (e,f) Under 100%SOC stored for 3 months in STD. (g,h) Under 100%SOC stored for 3 months after addition to STD.

Figure S2 a,b,c,d: Cathode, anode, separator in 1µm and 50 µm in STD before storage.

Table S7	The	errors	of the	Atomic	Absorption	Spectrometer	method	in	the	quanti
determinat	ion of	lithium	content	t						

Number of samples	Sample composition	Purity quotient	Lithium content in samples	Measured Li content by atomic absorption spectrometer method	Test error of atomic absorption spectrometer method
Number 1				18.66%	0.67%
	Li ₂ CO ₃	99.99%	18.7855%		
	2 0				

Wei Wei Li Co ght The The Net ght mas mas of Constan proport proport of weight s in s in SO Storage Electrol ion of ion of anod t copp of the the С volume/ dead Li time yte e Co in er anode/ ano ano the piec mL in the foil/ de/ de/ mg e anode anode mg mg mg /mg 30 0.44 0.01 1.450 52.7 36.26 0.066% % 8 8 % STD 100 0.45 1.490 52.2 35.76 0.02 0.074% 4 % % 16.4 100mL 3 months 4 1.074 30 0.26 0.01 0.045% 45.6 29.16 After 7 % % additio 0.01 100 0.35 1.089 n 55 38.56 0.048%% 8 4 %

 Table S8 Date of dead lithium and cobalt in the anode stored for 3 months at 45 °C in STD and after

 addition to STD

The detail theoretical calculation process is as follows:

The geometry optimization, frequencies and density functional theory (DFT) chemical description for the molecular structures of all title compounds were performed using Gaussian09 program[1] package with M062X exchange-correlation functional and 6- $311+G^{**}$ basis set[2,3] for all atoms. In this work, temperature (45°C) were considered to calculate the thermodynamic data. Harmonic vibration frequency calculations were performed for all stationary points to confirm them as a local minima (zero imaginary frequencies). Orbital composition analysis employed by Multiwfn program[4,5]. The thermochemical corrections for the Gibbs free energies were derived at 298.15 K and 318.15 K (45°C) using Shermo_2.4[6]. The interaction energy of species (EC, EP, PP, PC, and MMDS) and LiPF₆ is given as:

 $\Delta Eint = Ecomplex - Especies - ELiPF_6$

Where the Ecomplex, Especies, $ELiPF_6$ represents for the energy of species-LiPF₆ complexes, EC, PC and MMDS etc, and LiPF₆.

Fig. S3 LUMO and HOMO energy level analysis of EC+PF₅, EP+PF₅, PC+PF₅, PP+PF₅, and MMDS+PF₅.

Fig. S4 LUMO and HOMO energy level analysis of EC, EP, PC, PP, and MMDS.

References:

- [1] Gaussian 09, Revision A.02; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
- G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;

Petersson, G. A.; et al. Gaussian, Inc.: Wallingford, CT, 2009.

- [2] C. Lee, W. Yang, R. Parr, Phys. Rev. B, 1988, 37, 785–789.
- [3] R. Ditchfield, W. Hehre, J. Pople, J. Chem. Phys, 1971, 54, 724-728.
- [4] T. Lu, F.W. Chen, J. Comput. Chem, 2012, 33, 580-592.
- [5] T. Lu, F.W. Chen, Acta Phys. -Chim. Sin., 2011, 27, 2786-2792.
- [6] T. Lu, F.W. Chen, Comput. Theor. Chem., 2021, 1200, 113249.