Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Usnic acid based thiazole-hydrazones as multi-targeting inhibitors of a wide spectrum of SARS-CoV-2 viruses

Olga I. Yarovaya, *a Aleksandr S. Filimonov, a Dmitriy Baev, Sophia S. Borisevich, Varvara Chirkova, Anna V. Zaykovskaya, Ekaterina D. Mordvinova, A Svetlana V. Belenkaya, Dmitriy N. Shcherbakov, Olga A. Luzina, Oleg V. Pyankov, and Nariman F. Salakhutdinov

a. Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentyev av., 630090, Russia, Novosibirsk, Russian Federation E-mail: 000@nioch.nsc.ru

b. Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 71 Pr. Oktyabrya, 450078, Ufa, Russia

c. Altay State University 656049, Barnaul, Leninski pr., 61 Russian Federation

d. State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Russia, Koltsovo, Novosibirsk Region, Russian Federation.

Supplementary Material

molecular structure. A - (+)-7a, B - (+) -10g, C - (+) -10i, D - (-) -10j.

Figure S2 Diagrams of possible interactions of new usnic acid derivatives in the active site of the main protease. The percentage of molecular dynamics simulation time during which the observed interactions existed is given. Purple lines with arrows mark hydrogen bonds, green lines indicate stacking interactions, hydrophobic contacts are possible with individual amino acids without lines. For each molecule, a chart of all possible non-covalent interactions with amino acids of the active site of the main protease is given. A - (+)-7a, B - (+)-10g, C - (+)-10i, D - (-)-10j.

Strain	Mutations	Distance from the binding site, Å	Deletion	Distance from the binding site, Å
	T95I	~ 11		
Dolta (P 1 617 2)	G142D	~ 13	156 157	~ 10 12
Delta (B.1.617.2)	Y145H	~ 20	120-127	10-12
	F158G	~ 16		
Omicron BA.1	T95I	~ 11	143-145	~ 15
Omicron BA E 2	G142D	~ 13		
UTILICION DA 5.2	V213G	~ 18		
	H146Q	~ 25		
Omicron XBB.1.5	Q183E	~ 15	144	~ 22
	V213E	~ 18		
Omicron BO1 1	G142D	~ 13		
Omicron BQ1.1	V213G	~ 18		

Table S1 A.a. alignment NTD of S-protein and analysis of biliverdin binding site

Figure S3 Result of molecular re-docking procedure: green molecule is correspond to geometrical parameters from X-ray complex (PDB ID: 7B62), violet – obtained from re-docking. H-bonds are shown yellow dotted line.

ID	pIC ₅₀	Docking	Emodel, kcal/mol	IFD score, kcal/mol	Interactions with a.a.		Pose	
		score, kcal/mol			H-bond	Others	Score (MD)	kcal/mol
(+)-7a	6.19	-9.083	-96.26	-657.16	N121	none	1.18	-91.2
					L101			
					N121			
(+)-10g	5.03	-10.278	-109.66	-657.93	L101	F192 π-π	1.21	-70.5
					Q173			
(+)-10i	5.97	-10.579	-100.47	-654.42	N121	Η207 π-π	2.37	-76.3
					1101			

Table S2 S glycoprotein mo	olecular docking and	metadynamics results
Table 32 3 giveopioleni ind	Dieculai uockilig ali	i inclaughannus results

					Y170			
					1101			
(+)-10j	5.69	-7.185	-90.02	-653.17	N99	W104 π-π	1.85	-84.1
					R190			
					H207			

Figure S4 RMSD fluctuation of docking poses of studied compounds

The NMR spectrum of compound 1

NMR ¹H (**CDCl**₃, δ): 1.74 (3H, s, H-15), 2.09 (3H, s, H-10), 2.64 and 2.66 (6H, s, H-12 and H-14), 5.96 (1H, s, H-4), 11.02 (OH-9), 13.30 (OH-7), 18.84 (OH-3).

NMR ¹H (**CDCl**₃, δ): 1.67 (3H, s, H-15), 2.13 (3H, s, H-10), 2.61 (3H, s, H-12), 5.88 (1H, s, H-4). NMR ¹H (**DMSO-***d***6**, δ): 1.70 (3H, s, H-15), 2.03 (3H, s, H-10), 2.60 (3H, s, H-12), 6.20 (1H, s, H-4).

Table S3. NMR¹H spectra of 16k–16o (CDCl₃ for 7a,b, 8b, 9a,b and DMSO-*d6* for 8a,c; δ).

Nº	7a	7b	8a	8b	8c	9a	9b
	20 21 0 19 18	$\begin{array}{c} 27 & 26 \\ 18 & 0 & 22 \\ 21 & 21 & 23 & 24 \\ 19 & 20 & 23 & 24 \\ \end{array} $	20 NH 19 18	20 N 22 19 18	20 HBr NH 19 18	$HN - 19 \\ 21 - 20 \\ 22 - 25 \\ 23 - 24 \\ 23 - 24 \\ 24 - 25 \\ 24 -$	HN = 21 - 25 - 23 - 24 - 24 - 26 - 26 - 26 - 26 - 26 - 26
H-14	s 7.15	s 7.12	s 7.24	s 7.09	s 7.37	s 7.24	s 7.22
H-17	s 7.60	s 7.68	s 7.94	s 7.68	s 8.09	s 8.30	s 8.33
H-19	d 6.65 (J = 2.5 Hz)	d 6.69 (J = 3.3 Hz, AB-system) d 6.66	s 6.46	m 6.39	s 8.00	m 8.21	
H-20	m 6.45	(J = 3.3 Hz, AB-system)	s 6.14	m 6.11	s 9.17		
H-21	d 7.49 (J = 2.2 Hz)		s 6.92	s 6.72		s 7.45	m 7.34
H-22				s 3.91		m 7.21	m 7.13
		s 7.62				m 7.21	m 7.13
						d 7.83 (J = 2.7 Hz)	m 8.10
		d 7.52					
		(J = 7.5 Hz)					
		m 7.21–7.30					s 2.51
		m 7.21–7.30					
NH	s 8.88			bs 8.68		s 12.08	s 12.00
NH (HetAr)			s 11.30		s 12.60	s 11.59	s 11.51
OH-3	s 18.77	s 18.76	bs 18.77	s 18.79		bs 18.82	bs 18.82
OH-7	bs 12.40		s 12.05		s 12.71	s 13.03	bs 13.05
OH-9	s 10.26	s 10.26	s 10.28	s 10.28	s 10.31	s 10.30	s 10.31

Table S4. NMR¹H spectra of 17a–17f (CDCl₃, δ).

		$\mathbf{R}: \begin{array}{c} 25 \\ 0 \\ 21 \\ 22 \\ 23 \\ 18 \end{array} \begin{array}{c} 21 \\ 20 \\ 23 \\ 18 \end{array}$	$ \begin{array}{c} 30 & 29 & R^3 \\ 31 & 28 \\ 0 & 26 & 28 \\ R^{27} & R^2 \end{array} $	10a R ¹ =H R ² =H R ³ 10b R ¹ =H R ² =F R ³ 10c R ¹ =F R ² =H R ³ 10d R ¹ =H R ² =CI R 10e R ¹ =F R ² =H R ³ 10f R ¹ =H R ² =Me F	² =F =H ³ =F =F ³ =Cl	
N⁰	10a	10b	10c	10d	10e	10f
H-14	s 7.09	s 7.02	m 7.05	s 7.06	s 7.09	s 7.07
H-17	m 7.45–7.65	s 7.81	s 7.68	s 7.64	s 7.60	s 7.69
H-19	m 7.45–7.65	s 7.71	s 7.62	s 7.61	s 7.56	s 7.64
H-22	m 6.82–6.97	d 6.77 (J = 8.6 Hz)	d 6.78 (J = 7.0 Hz)	m 6.82	d 6.51 (J = 7.9 Hz)	m 6.76
ц <u>ээ</u>	m 7 45-7 65	d 7.44	d 7.44	d 7.48	d 7.48	d 7.51
11-25	1117.45-7.05	(J = 8.6 Hz)	(J = 7.0 Hz)	(J = 7.3 Hz)	(J = 8.3 Hz)	(J = 8.3 Hz)
H-24	s 5.00	s 5.07	s 5.09	s 4.97	s 5.00	s 4.99
H-25	s 3.83	s 3.79	s 3.79	s 3.82	s 3.84	s 3.84
H-27	m 6.82–6.97	m 6.90–7.10	s 6.91	m 7.01		d 6.88 (J = 2.4 Hz)
H-28	m 6.82–6.97	m 6.90–7.10	m 7.05		d 6.82 (J = 7.9 Hz)	s 2.34 (Me
H-29		m 6.90–7.10	m 7.05			
H-30	m 6.82–6.97		m 7.05	m 7.01	t 6.41 (J = 8.4 Hz)	d 7.21 (J = 8.6 Hz)
H-31	m 6.82–6.97	m 6.90–7.10		m 6.82		d 6.83 (J = 8.5 Hz)
NH	bs 8.92		bs 9.45	bs 9.45	bs 8.93	bs 9.56
OH-3	s 18.78	s 18.77	s 18.76	s 18.77	s 18.78	s 18.79
OH-7					bs 12.21	
OH-9	s 10.24	s 10.29	s 10.23	s 10.24	s 10.23	s 10.27

Table S5. NMR¹H spectra of 17g-17k (CDCl₃ for g-j and DMSO-*d6* for k, δ).

$25 \\ 0 \\ 21 \\ 20 \\ 23 \\ 19 \\ 18 \\ 19 \\ 18 \\ 19 \\ 18 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 30 & 29 & 25 \\ 311 & 28 & 21 \\ 26 & 27 & 22 \\ 27 & 23 \\ 1 \\ \end{array}$	20 ²⁴ 19 8	25 0 21 20 24 26 22 23 19 18	$\begin{array}{c} 27 \\ N \\ 28 \\ 33 \\ 29 \\ 29 \\ 29 \\ 29 \\ 20 \\ R^2 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10g		10h	10i R ¹ =H R ² = 10j R ¹ =OMe I	F R ² =H	10k
N⁰	10g	10k	10i	10j	10k
H-14	s 7.08	s 7.07	s 7.00	s 6.98	s 7.23
H-17	s 7.49	s 7.69	bs 7.98	s 8.13	s 7.26
H-19	s 7.32	s 7.60	bs 7.98	s 8.05	s 7.67
⊔_22	d 6.76	m 6 80	d 6.56	d 6.46	d 7.08
11-22	(J = 8.5 Hz)	111 0.80	(J = 8.0 Hz)	(J = 8.1 Hz)	(J = 8.4 Hz)
H-23	m 7 40	m 7 47	m 7 34	m 6 84-7 03	d 7.50
11 25	117.40	111 7.47	117.54	11 0.04 7.05	(J = 8.4 Hz)
H-24	s 4.04	s 4.51	s 4.11	s 4.19	s 5.27
H-25	s 3.77		s 3.61	bs 3.51	s 3.85
H-26			s 3.29	bs 3.51	
H-27	s 1.22 (t-Bu)		s 3.48	m 3.85	
H-28	m 7.23	s 2.73			
H-29	m 7.08		m 6.83–6.94	m 6.84–7.03	s 2.40
H-30	s 2.33 (Me)		m 6.83–6.94	m 3.85 (OMe)	s 2.59
H-31	m 7.32			m 6.84–7.03	
H-32			m 6.83–6.94	m 6.84–7.03	
H-33			m 6.83–6.94	m 6.84–7.03	
NH	bs 9.09		bs 11.22	bs 11.22	bs 12.28
OH-3	s 18.79		bs 18.7	bs 18.76	bs 18.80
OH-7			bs 12.64	bs 12.63	bs 12.77
OH-9	s 10.26		s 10.24	s 10.23	s 10.30

Figure S6: NMR ¹H spectrum of **1**

Figure S7: NMR ¹H spectrum of 5

Figure S8: NMR ¹H spectrum of 7a

Figure S10: NMR ¹H spectrum of 8a

Figure S12: NMR ¹H spectrum of 8c

Figure S14: NMR ¹H spectrum of 9b

Figure S15: NMR ¹H spectrum of 10a

Figure S16: NMR ¹H spectrum of 10b

Figure S17: NMR ¹H spectrum of 10c

Figure S18: NMR ¹H spectrum of 10d

Figure S20: NMR ¹H spectrum of 10f

Figure S22: NMR ¹H spectrum of **10**i

Figure S23: NMR ¹H spectrum of 10j

Figure S24: NMR ¹H spectrum of **10k**