Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

## Anion-dependent dysprosium (III) cluster single-molecule magnets

Cai-Ming Liu,\* and Xiang Hao

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Email: cmliu@iccas.ac.cn.

- 1. Figs S1-S3. IR spectra of  $H_2L$ , 1 and 2.
- 2. Table S1. Crystal Data and Structural Refinement Parameters for 1 and 2.
- Tables S2 and S3. Dy (III) ion geometry analysis by SHAPE 2.1 software for1 and
   2.
- 4. Figs S4 and S5. *M versus H* plots at 2-6 K of 1 and 2.
- 5. Table S4. Linear combination of two modified Debye model fitting parameters from 3 K to 14 K of **1** at 0 Oe dc field.
- 6. Fig. S6. Plots of  $\chi''$  versus *T* for 1 ( $H_{dc} = 1500$  Oe).
- 7. Fig. S7. Plots of  $\chi''$  versus v for 1 ( $H_{dc} = 1500$  Oe).
- 8. Fig. S8. Plot of  $\ln(\tau)$  versus 1/T for **1** ( $H_{dc} = 1500$  Oe).
- 9. Fig. S9. Hysteresis loop for **1** at 1.9 K.
- 10. Table S5. Linear combination of two modified Debye model fitting parameters from 4 K to 17 K of **2** at 0 Oe dc field.
- 11. Fig. S10. Plots of  $\chi''$  versus *T* for **2** ( $H_{dc} = 1500$  Oe).
- 12. Fig. S11. Plots of  $\chi''$  versus v for **2** ( $H_{dc} = 1500$  Oe).
- 13. Fig. S12. Plot of  $\ln(\tau)$  versus 1/T for **2** ( $H_{dc} = 1500$  Oe).
- 14. Fig. S13. Hysteresis loop for 2 at 1.9 K.



Fig. S1. IR spectrum of  $H_2L$ .



Fig. S2. IR spectrum of 1.



Fig. S3. IR spectrum of 2.

|                                                         | 1                                                                                              | 2                                     |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|
| formula                                                 | C <sub>57</sub> H <sub>56</sub> Dy <sub>4</sub> F <sub>4</sub> N <sub>22</sub> O <sub>20</sub> | $C_{80}H_{71}Cl_2Dy_6F_6N_{24}O_{27}$ |
| $F_W$                                                   | 2095.23                                                                                        | 2960.50                               |
| crystal system                                          | triclinic                                                                                      | monoclinic                            |
| space group                                             | <i>P</i> -1                                                                                    | $P2_1/n$                              |
| <i>a</i> [Å]                                            | 12.74600(10)                                                                                   | 14.2124(2)                            |
|                                                         | 13.98880(10)                                                                                   | 26.5826(4)                            |
| <i>c</i> [Å]                                            | 20.3905(2)                                                                                     | 26.3977(5)                            |
| $\alpha$ [°]                                            | 75.6740(10)                                                                                    | 90.00                                 |
| $\beta[\circ]$                                          | 80.4120(10)                                                                                    | 101.5751(17)                          |
| <u>[½]</u>                                              | 86.0850(10)                                                                                    | 90.00                                 |
| $V[Å^3]$                                                | 3472.00(5)                                                                                     | 9770.3(3)                             |
| Z                                                       | 2                                                                                              | 4                                     |
| $\rho_{\text{calc}}[\mathbf{g} \cdot \mathbf{cm}^{-3}]$ | 2.004                                                                                          | 2.013                                 |
| $\mu$ [mm <sup>-1</sup> ]                               | 4.354                                                                                          | 4.683                                 |
| <i>T</i> [K]                                            | 170                                                                                            | 170                                   |
| $\lambda$ (Mo-K $\alpha$ )[Å]                           | 0.71073                                                                                        | 0.71073                               |
| reflections collected                                   | 89284                                                                                          | 147127                                |
| unique reflections                                      | 12281                                                                                          | 22402                                 |
| observed reflections                                    | 11779                                                                                          | 18558                                 |
| parameters                                              | 989                                                                                            | 1424                                  |
| GoF                                                     | 1.040                                                                                          | 1.098                                 |
| $R_1$                                                   | 0.0207                                                                                         | 0.0794                                |
| wR <sub>2</sub>                                         | 0.0544                                                                                         | 0.2064                                |
| CCDC                                                    | 2283183                                                                                        | 2283184                               |

 Table S1. Crystal Data and Structural Refinement Parameters for 1 and 2.

| Configuration               | ABOXIY Configuration   |                                | ABOXIY | ABOXIY | ABOXIY |
|-----------------------------|------------------------|--------------------------------|--------|--------|--------|
|                             | Dy1                    | -                              | Dy2    |        | Dy4    |
| $Octagon(D_{8h})$           | 31.811                 | Enneagon(D <sub>9h</sub> )     | 33.390 | 32.430 | 35.582 |
| Heptagonal                  | 24.409                 | Octagonal                      | 21.061 | 23.472 | 23.368 |
| pyramid( $C_{7v}$ )         |                        | pyramid( $C_{8v}$ )            |        |        |        |
| Cube $(O_{\rm h})$          | 14.653                 | Heptagonal 16.847              |        | 18.701 | 16.287 |
|                             |                        | bipyramid(D <sub>7h</sub> )    |        |        |        |
| Hexagonal                   | 13.545                 | Johnson                        | 13.833 | 14.004 | 15.070 |
| bipyramid( $D_{6h}$ )       |                        | triangular                     |        |        |        |
|                             |                        | cupola $J3(C_{3v})$            |        |        |        |
| Square antiprism            | 3.717                  | Capped cube                    | 9.496  | 10.517 | 9.479  |
| (D <sub>4d</sub> )          |                        | $J8(C_{4v})$                   |        |        |        |
| Triangular                  | 1.547                  | Spherical-                     | 7.935  | 9.524  | 8.236  |
| dodecahedron $(D_{2d})$     |                        | relaxed capped                 |        |        |        |
|                             |                        | $cube(C_{4v})$                 |        |        |        |
| Johnson                     | 11.392                 | Capped square                  | 2.758  | 2.812  | 2.063  |
| gyrobifastigium J26         |                        | antiprism                      |        |        |        |
| (D <sub>2d</sub> )          |                        | $J10(C_{4v})$                  |        |        |        |
| Johnson elongated           | 28.388                 | Spherical                      | 1.617  | 1.989  | 1.039  |
| triangular                  |                        | capped square                  |        |        |        |
| bipyramid J14 ( $D_{3h}$ )  |                        | antiprism( $C_{4v}$ )          |        |        |        |
| Biaugmented                 | 3.524                  | Tricapped                      | 2.805  | 2.798  | 3.256  |
| trigonal prism J50          |                        | trigonal prism                 |        |        |        |
| $(C_{2v})$                  |                        | J51(D <sub>3h</sub> )          |        |        |        |
| Biaugmented                 | 2.642                  | Spherical                      | 2.091  | 2.708  | 2.165  |
| trigonal prism ( $C_{2v}$ ) | m $(C_{2v})$ tricapped |                                |        |        |        |
|                             |                        | trigonal                       |        |        |        |
|                             |                        | $\operatorname{prism}(D_{3h})$ |        |        |        |
| Snub diphenoid J84          | 3.509                  | Tridiminished                  | 12.148 | 12.078 | 11.806 |
| $(D_{2d})$                  |                        | icosahedron                    |        |        |        |
|                             |                        | $J63(C_{3v})$                  |        |        |        |
| Triakis tetrahedron         | 14.028                 | Hula-hoop( $C_{2v}$ )          | 12.077 | 9.456  | 11.445 |
| ( <i>T</i> <sub>d</sub> )   |                        |                                |        |        |        |
| Elongated trigonal          | 23.937                 | Muffin( $C_{\rm s}$ )          | 1.927  | 1.672  | 1.538  |
| bipyramid $(D_{3h})$        |                        |                                |        |        |        |

 Table S2. Dy (III) ion geometry analysis by SHAPE 2.1 software for 1.

| Configuration                                  | ABOXIY | ABOXIY | ABOXIY | ABOXIY | ABOXIY  | ABOXIY |
|------------------------------------------------|--------|--------|--------|--------|---------|--------|
| _                                              | Dy1    | Dy2    | Dy3    | Dy4    | Dy5     | Dy6    |
| $Octagon(D_{8h})$                              | 31.267 | 31.777 | 31.632 | 32.797 | 32.037  | 31.212 |
| Heptagonal                                     | 22.446 | 22.451 | 22.289 | 21.776 | 22.277  | 22.444 |
| pyramid( $C_{7v}$ )                            |        |        |        |        |         |        |
| Hexagonal                                      | 16.688 | 16.120 | 16.662 | 16.436 | 16.899  | 15.608 |
| bipyramid( $D_{6h}$ )                          |        |        |        |        |         |        |
| Cube $(O_h)$                                   | 14.447 | 13.365 | 13.017 | 14.147 | 13.418  | 11.917 |
| Square antiprism                               | 4.468  | 4.054  | 3.887  | 4.862  | 3.913   | 4.058  |
| (D <sub>4d</sub> )                             |        |        |        |        |         |        |
| Triangular                                     | 3.422  | 3.247  | 2.654  | 3.065  | 3.003   | 2.983  |
| dodecahedron                                   |        |        |        |        |         |        |
| (D <sub>2d</sub> )                             |        |        |        | _      |         |        |
| Johnson                                        | 13.168 | 14.226 | 13.546 | 12.964 | 14.017  | 13.980 |
| gyrobifastigium                                |        |        |        |        |         |        |
| J26 (D <sub>2d</sub> )                         |        |        |        |        |         |        |
| Johnson                                        | 25.046 | 27.521 | 26.917 | 24.194 | 26.500  | 27.379 |
| elongated                                      |        |        |        |        |         |        |
| triangular                                     |        |        |        |        |         |        |
| bipyramid J14                                  |        |        |        |        |         |        |
| $(D_{3h})$                                     |        | 2.150  | 0.505  |        | • • • • |        |
| Biaugmented                                    | 2.852  | 3.468  | 2.737  | 3.008  | 2.801   | 3.665  |
| trigonal prism                                 |        |        |        |        |         |        |
| $J50(C_{2v})$                                  |        | 2.2.10 | 2.007  | 2 000  | 2.026   |        |
| Biaugmented                                    | 2.728  | 3.240  | 2.807  | 3.089  | 2.826   | 3.336  |
| trigonal prism                                 |        |        |        |        |         |        |
| $(C_{2v})$                                     | 4 700  | 5.002  | 4.005  | 4.575  | 4.627   | 5.1(0  |
| Snub diphenoid                                 | 4.723  | 5.092  | 4.235  | 4.5/5  | 4.637   | 5.169  |
| $J84 (D_{2d})$                                 | 14.000 | 14.021 | 12 200 | 14.442 | 12.000  | 12 (0) |
| 1 riakis                                       | 14.800 | 14.021 | 13.380 | 14.443 | 13.896  | 12.686 |
| $\frac{\text{tetranedron}(I_{d})}{\Gamma_{1}}$ | 22.000 | 24.276 | 22.040 | 22.20( | 22.097  | 22 (71 |
| Elongated                                      | 22.888 | 24.270 | 23.949 | 22.396 | 23.987  | 23.0/1 |
| trigonal                                       |        |        |        |        |         |        |
| Dipyramid ( $D_{3h}$ )                         | 1      | 1      | 1      |        |         |        |

**Table S3.** Dy (III) ion geometry analysis by SHAPE 2.1 software for 2.



**Fig. S4**. *M versus H* plots at 2-6 K of **1**.



**Fig. S5**. *M versus H* plots at 2-6 K of **2**.

| <i>T</i> (K) | $\chi_2(\text{cm}^3.\text{mol}^{-1})$ | $\chi_1(\text{cm}^3.\text{mol}^{-1})$ | $\chi_0(\mathrm{cm}^3.\mathrm{mol}^{-1})$ | $	au_1(s)$ | $\alpha_1$ | $	au_2(s)$ | $\alpha_2$ |
|--------------|---------------------------------------|---------------------------------------|-------------------------------------------|------------|------------|------------|------------|
| 3            | 25.07181                              | 12.85752                              | 2.32299                                   | 0.00527    | 0.538      | 0.1675     | 0.188      |
| 4            | 20.78438                              | 12.20262                              | 1.88733                                   | 0.00649    | 0.518      | 0.10131    | 0.174      |
| 5            | 17.73782                              | 8.28603                               | 1.72912                                   | 0.0026     | 0.450      | 0.0623     | 0.257      |
| 6            | 15.09536                              | 6.98879                               | 1.59126                                   | 0.00182    | 0.387      | 0.03563    | 0.238      |
| 7            | 12.98384                              | 6.422                                 | 1.43908                                   | 0.00135    | 0.345      | 0.02043    | 0.194      |
| 8            | 11.35637                              | 5.79178                               | 1.29821                                   | 0.00088    | 0.314      | 0.01126    | 0.169      |
| 9            | 10.18731                              | 4.65446                               | 1.24507                                   | 0.00041    | 0.251      | 0.00579    | 0.173      |
| 10           | 9.17564                               | 4.37171                               | 0.93334                                   | 0.00031    | 0.301      | 0.00322    | 0.168      |
| 11           | 8.35459                               | 4.04525                               | 0.99669                                   | 0.00022    | 0.305      | 0.00181    | 0.177      |
| 12           | 7.60703                               | 5.31278                               | 1.7959                                    | 0.0002     | 0.258      | 0.00155    | 0.116      |
| 13           | 7.02127                               | 5.55415                               | 2.06627                                   | 0.00018    | 0.222      | 0.00128    | 0.075      |
| 14           | 6.51789                               | 5.34378                               | 2.31748                                   | 0.00012    | 0.189      | 0.00094    | 0.053      |

**Table S4.** Linear combination of two modified Debye model fitting parameters from 3K to 14 K of 1 at 0 Oe dc field.



**Fig. S6**. Plots of  $\chi''$  versus *T* for **1** ( $H_{dc} = 1500$  Oe).



**Fig. S7**. Plots of  $\chi''$  versus v for 1 ( $H_{dc} = 1500$  Oe).



**Fig. S8**. Plot of  $\ln(\tau)$  versus 1/T for **1** ( $H_{dc} = 1500$  Oe); the solid line represents the best fitting with Orbach *plus* Raman.



**Fig. S9.** Hysteresis loop for **1** at 1.9 K with the normal sweep rate (100-300  $\text{Oe} \text{min}^{-1}$ ).

| <i>T</i> (K) | $\chi_2(\text{cm}^3.\text{mol}^{-1})$ | $\chi_1(\text{cm}^3.\text{mol}^{-1})$ | $\chi_0(\text{cm}^3.\text{mol}^{-1})$ | $	au_1(s)$ | $\alpha_1$ | $	au_2(s)$ | $\alpha_2$ |
|--------------|---------------------------------------|---------------------------------------|---------------------------------------|------------|------------|------------|------------|
| 4            | 30.41546                              | 26.2716                               | 0.23999                               | 0.10279    | 0.226      | 0.00246    | 0.272      |
| 5            | 26.00194                              | 22.06772                              | 0.20131                               | 0.06227    | 0.239      | 0.00205    | 0.282      |
| 6            | 22.25434                              | 17.6234                               | 0.14548                               | 0.03918    | 0.227      | 0.00218    | 0.319      |
| 7            | 19.19946                              | 14.15368                              | 0.13914                               | 0.02445    | 0.211      | 0.00189    | 0.321      |
| 8            | 16.99774                              | 10.73509                              | 0.1323                                | 0.01623    | 0.171      | 0.00182    | 0.349      |
| 9            | 15.23236                              | 9.86622                               | 0.23595                               | 0.00958    | 0.172      | 0.00106    | 0.344      |
| 10           | 13.78287                              | 9.84581                               | 0.41384                               | 0.00558    | 0.180      | 0.00049    | 0.303      |
| 11           | 12.58207                              | 9.07404                               | 0.54531                               | 0.00343    | 0.178      | 0.0003     | 0.303      |
| 12           | 11.50595                              | 8.00391                               | 0.74549                               | 0.00214    | 0.161      | 0.00022    | 0.313      |
| 13           | 10.63442                              | 7.70631                               | 1.05453                               | 0.00136    | 0.160      | 0.00016    | 0.272      |
| 14           | 9.88637                               | 7.01189                               | 1.4421                                | 0.00091    | 0.157      | 0.00015    | 0.238      |
| 15           | 9.21538                               | 5.47318                               | 1.79264                               | 0.00072    | 0.139      | 0.00014    | 0.193      |
| 16           | 8.63145                               | 5.03484                               | 1.78642                               | 0.00048    | 0.143      | 0.00013    | 0.179      |
| 17           | 8.12767                               | 5.42767                               | 1.86059                               | 0.0003     | 0.159      | 0.00007    | 0.119      |

**Table S5**. Linear combination of two modified Debye model fitting parameters from 4 K to 17 K of **2** at 0 Oe dc field.



**Fig. S10**. Plots of  $\chi''$  versus *T* for **2** ( $H_{dc} = 1500$  Oe).



**Fig. S11**. Plots of  $\chi''$  versus v for **2** ( $H_{dc} = 1500$  Oe).



**Fig. S12**. Plot of  $\ln(\tau)$  versus 1/T for **2** ( $H_{dc} = 1500$  Oe); the solid line represents the best fitting with Orbach *plus* Raman.



Fig. S13. Hysteresis loop for 2 at 1.9 K with the normal sweep rate (100-300 Oe  $\min^{-1}$ ).