Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Highly Efficient Room-Temperature NO2 Gas Sensor Based on Three-Dimensional Core-

Shell Structured CoS₂ Bridging Co₃O₄@MoS₂.

Haiyang Chang^{a,b}, Jiahui Fan^b, Kejian Yang^{a,*}, Cheng Wang^{a,b,*}, Boxuan Zhang^a, Wanying Zhang^a, Xudong Chen^{a,b,*}

- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.
- b. Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China Email: yang 771172@163.com; wangc 93@gdut.edu.cn; chenxd@gdut.edu.cn

Physical characterization

The phase constituents of the as-products were analyzed by X-ray diffraction (XRD, D/MAX IIB-40KV, Japan) with Cu-K radiation, =1.5406 Å radiation source. The morphology and surface chemical characteristics of the products were observed with a high-resolution transmission electron microscope (TEM, JEOL 2100). The chemical states of the composites were tested using X-ray photoelectron spectrometry measurements (XPS, VGESCALAB MK II using Mg-Ka (1253.6 eV) achromatic X-ray radiation). Binding energies were referenced to the C 1s peak of the (C-C) bond which set at 284.4 eV. The UV-vis diffuse reflectance spectra (DRS) of the samples were tested on a UV-vis spectrophotometer (UV 2550, using BaSO₄ for the baseline measurement) with an integrating sphere attachment within the 200-800 nm range. All the electrochemical tests were carried out with a CHI-660E electrochemical workstation (Shanghai Chenhua Instruments Limited, China). Electrochemical impedance spectra (EIS) were carried out under laboratory air conditions. For EIS, a lower voltage amplitude (0.2V) was chosen to reduce sample interference and minimize the signal-to-noise ratio, and the frequency range was set to 1-10⁶ Hz. A four-electrode system was used, including a working electrode, counter electrode, reference electrode, and auxiliary electrode. The electrical properties of different samples were studied on the gold interleaved electrode. On the other hand, the three-electrode system was used throughout Mott-Schottky (MS) tests, and it was carried out in a 0.1 M Na₂SO₄ solution. A glass carbon electrode (GCE) covered by the as-fabricated sample was used as a working electrode, a platinum (Pt) plate electrode as a counter electrode, and a saturated calomel electrode as a reference electrode. We indirectly proved the conductivity of the materials themselves by EIS and MS testing. All the electrochemical measurements were carried out at room temperature (23±1°C). The work functions were characterized by Kelvin probe (SKP-5050) at room temperature. Raman spectroscopy (Jobin-Yvon HR 800 micro-Raman spectrometer) is used for molecular structure analysis. Temperature program desorption (TPD) was carried out by AutoChem TP5080 chemisorption analyzer and using mass spectra (QIC-20, Hidden) to record the TPD signals.

Scheme S1. The gas delivery system diagram for the sensing process.

Fig. S1 XRD pattern of the pristine Co₃O₄ and MoS₂.

Fig. S2 (a-c) TEM and HRTEM image of pure Co_3O_4 , The selected area electron diffraction (SAED) also proved the coexistence of three different crystalline phases in Co_3O_4

Materials	Gas	W. T. (°C)	Gas Conc. (ppm)	Tres/Trec	Sensitivity (Ra/Rg)	LOD (ppm)	Ref	
This Work	NO ₂	RT	100	3.4s/54.4s	39.6 ²	0.01	This Work	
Carbon Dots- WO ₃	NO ₂	RT	5	5s/376s	2.13 ^①	200ppb	[1]	
S-doped SnO ₂	NO_2	RT	5	27s/32s	10.7^{\odot}	0.0018	[2]	
MoS ₂ -bilayer	NO ₂	RT	10		21% ^{^①}		[3]	
n-MoS ₂ /p-GaN	NO ₂	RT	50	272s/612s	98.42% [®]		[4]	
MoS ₂ /SnO ₂	NO ₂	RT	250		18.7^{\odot}	5	[5]	
CeO ₂ -Graphene	NO_2	136	200	250s/2590s	33 [©]		[6]	
SnS ₂ /SnSe ₂	NO ₂	RT	2		699.2% ¹		[7]	
Co ₃ O ₄ /rGO	NO ₂	RT	5	900s/	26.8% ¹	0.05	[8]	
$n-SnO_2/p-Co_3O_4$	NO_2	300	10		129.8% [®]	2	[9]	
α-Fe ₂ O ₃ /Co ₃ O ₄ -5 min-rGO	NO ₂	130	2	44s/50s	17.64 [©]	0.44ppb	[10]	

Table S1. The comparison of present work on Co_3O_4 - $CoS_2@MoS_2$ with the reported literatures.

W.T.: Working temperature; LOD: limit of detection; RT: Room temperature.

(1): S=|Ra–Rg|/Ra×100% or S=|Rg–Ra|/Ra×100%

2: S=Ra/Rg

Raw materials	R1 (Ω)	C1 (F)	R2 (Ω)	C2 (F)
C03O4-C0S2@M0S2-1	1.224×10 ⁵	4.712×10 ⁻¹¹	1.161×10 ⁶	4.534×10 ⁻¹⁰
C03O4-C0S2@M0S2-2	1.276×10 ⁵	6.804×10 ⁻¹¹	3.248×10 ⁵	3.844×10 ⁻¹¹
C03O4-C0S2@M0S2-3	1.805×10 ⁵	1.019×10 ⁻¹¹	1.323×10 ⁶	2.137×10 ¹⁰
C03O4	3.148×10 ⁷	1.045×10 ¹²	6.805×10 ⁷	3.828×10 ⁻¹⁰

Table S2 Parameters obtained by fitting experimental curve to equivalent circui

Fig. S3 The equivalent circuit model used to interpret the EIS data

Fig. S4 Dynamic response-recovery time curves of (a) Co_3O_4 ; (b) Co_3O_4 @ CoS_2 @MoS₂-1; (c) Co_3O_4 @ CoS_2 @MoS₂-3; (d)MoS₂ (RT = 25 °C, RH= 25 %).

Fig. S5 Response value of Co₃O₄-CoS₂@MoS₂-2 sensor at different humidity conditions.

Calculation for limit of detection (LOD):

The sensor noise was calculated using the variation in the relative sensor response in the baseline using the root-mean-square deviation (rms). According to the Eq. (1) below, and *Si* and *S* obtained by the polynomial fit method in Fig. S10, Vx^2 can be gathered as followed [11].

$$Vx^2 = \Sigma(Si - S)^2 \tag{1}$$

The sensor noise is 0.0003 according to the Eq. (2) and the theoretical detection limit (for signal-tonoise ratio of 3) is approximately 12 ppb according to the Eq. (3).

$$rms = \sqrt{Vx^2/N} \qquad (N = 30) \qquad (2)$$
$$LOD = 3 * (rms/slope) \qquad (3)$$

Therefore, the theoretical detection limit of 1.8 ppb to NO₂ at RT.

Fig. S6 (a) The curve obtained by fifth-order polynomial fitting the first 30 response points in the response-time baseline of the Co_3O_4 - $CoS_2@MoS_2$ -2 sensor before the injection of NO₂. The response values before and after fitting are recorded as Yi and Y, respectively; (b) the curve with detailed data obtained by linear fitting the response points in the NO₂ sensing measurement of Fig. 4a.

Sample	C03O4-C0S2@M0S2-1		C03O4-C0S2@M0S2-2			C03O4-C0S2@M0S2-3				C03O4		
NO ₂ (ppm)	S	T/s	Tr/s	S	T/s	Tr/s	S	T/s	Tr/s	S	T/s	Tr/s
100	30.16	7.05	60.04	39.6	3.42	54.40	33.51	6.40	57.32	9.08	9.39	75.87
50	24.27	10.20	55.88	30.21	7.21	50.00	28.55	9.80	54.21	2.90	15.52	67.70
30	22.72	14.37	52.78	26.45	11.20	46.00	25.30	13.38	47.22	1.87	17.94	59.30
10	21.89	18.04	51.56	24.79	15.00	35.60	22.64	17.56	44.20	1.56	29.68	53.54
5	11.58	27.52	49.34	14.16	19.00	24.00	12.19	25.59	31.00	1.37	34.56	41.09
3	10.27	34.00	43.30	12.92	29.40	22.00	11.73	27.94	26.38	1.19	38.98	32.00
1	9.17	38.30	32.04	11.76	35.00	20.00	10.51	37.12	22.00	1.13	41.12	25.00
0.5	7.16	48.33	27.00	10.44	38.00	18.60	8.33	45.00	19.40			
0.3	5.10	50.40	20.67	8.30	40.40	15.00	6.19	49.80	17.30			
0.1	3.06	60.80	18.73	5.14	46.00	10.90	4.14	58.65	15.00			
0.05	1.87	70.87	14.90	3.13	52.20	9.00	2.51	66.32	10.00			
0.03				1.21	56.60	5.60						

Table S3 Response, response time and recovery time of C₀₃O₄@C₀S₂@M₀S₂ sensors at room temperature (RT=25 °C, RH 25%).

*S: Response T_s: Response time T_r: Recovery time

Fig. S7 XPS spectra of Co₃O₄-CoS₂@MoS₂-2 in air and after NO₂ adsorption at RT

Table S4 O1s peak position and peak area ratio (%) of Co_3O_4 - $CoS_2@MoS_2$ -2 and Co_3O_4 - $CoS_2@MoS_2$ -2+NO2 samples.

Sample	C03O	4-CoS2@Mo	S2-2	C03O4-C0S2@M0S2-2+NO2			
Peak	ik O _l C		Oc	Ol	Ov	Oc	
Binding energy (eV)	529.73	531.04	532.03	529.76	531.05	532.2	
Peak area ratio (%)	49.42	26.29	24.24	45.49	36.45	17.85	

O_l: lattice oxygen; O_V: oxygen vacancy; O_c: chemisorbed oxygen

Co₃O₄-CoS₂@MoS₂-2+NO₂: Fresh Co₃O₄-CoS₂@MoS₂-2 adsorption NO₂ for 1 h at RT.

Fig. S8 EPR spectra of Co₃O₄-CoS₂@MoS2-2 and Co₃O₄

Fig. S9 O₂-TPD and NO₂-TPD of Co₃O₄-CoS₂@MoS₂-2 composite

References

[1] W. Bian, H. Dou, X. Wang, C. Li, Y. Zhang, C. Gong, N. Sun, S. Liu, P. Li, Q. Jing, B. Liu, Fabrication and Computational Study of a Chemiresistive NO₂ Gas Sensor Based on the Carbon Dots-WO₃ Heterostructure for Operating below Room Temperature, ACS Sens, 8 (2023) 748-756.

[2] P. Wang, W. Ge, L. Lin, X. Jia, X. Zhang, J. Lu, S-doped SnO2 derived from SnS nanoparticles for highly sensitive NO2 detection at room temperature, Journal of Alloys and Compounds, 953 (2023).

[3] M. Qi, Z. Huang, H. Zheng, L. Zhao, R. Jiang, J. Wang, J. Hu, G. Chen, S. Jia, J. Wang, Layer-Dependent NO₂-Sensing Performance in MoS2 for Room-Temperature Monitoring, ACS Applied Nano Materials, 6 (2023) 9290-9297.

[4] M. Reddeppa, B.-G. Park, G. Murali, S.H. Choi, N.D. Chinh, D. Kim, W. Yang, M.-D. Kim, NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity, Sensors and Actuators B: Chemical, 308 (2020).

[5] Y. Han, Y. Ma, Y. Liu, S. Xu, X. Chen, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Construction of MoS₂/SnO₂ heterostructures for sensitive NO₂ detection at room temperature, Applied Surface Science, 493 (2019) 613-619.

[6] L. Zhang, H. Xu, Y. Huang, H. Lu, T. Ai, K. Xu, F. Ma, P.K. Chu, Polar Cubic CeO₂ Nanoparticles on Graphene for Enhanced Room-Temperature NO₂ Sensing Performance, ACS Applied Nano Materials, 6 (2023) 10551-10558.

[7] R. Wu, K. Yan, J. Zhao, Z. Cai, S. Jian, L. Qiu, 2D/2D SnS₂/SnSe₂ van der Waals heterostructure for highly sensitive room-temperature NO₂ sensor: Key role of interface contact, Chemical Engineering Journal, 466 (2023).

[8] B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao, S. Li, Y. Wang, F. Liu, X. Liang, T. Zhang, G. Lu, Room temperature NO₂ gas sensor based on porous Co₃O₄ slices/reduced graphene oxide hybrid, Sensors and Actuators B: Chemical, 263 (2018) 387-399.

[9] Y.J. Kwon, H.G. Na, S.Y. Kang, M.S. Choi, J.H. Bang, T.W. Kim, A. Mirzaei, H.W. Kim, Attachment of Co₃O₄ layer to SnO₂ nanowires for enhanced gas sensing properties, Sensors and Actuators B: Chemical, 239 (2017) 180-192.

[10] L. Sun, J. Sun, K. Zhang, X. Sun, S. Bai, Y. Zhao, R. Luo, D. Li, A. Chen, rGO functionalized α-Fe₂O₃/Co₃O₄ heterojunction for NO₂ detection, Sensors and Actuators B: Chemical, 354 (2022). [11] J. Fan, L. Jiang, H. Lv, F. Qin, Y. Fan, J. Wang, M. Ikram, K. Shi, ZIF-67/BiOCl nanocomposites for highly efficient detection of NO₂ gas at room temperature, Journal of Materials Chemistry A, 11 (2023) 15370-15379.