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1. Experimental

Chemicals

Cobalt(II) tetrahydrate (Co(ac)2•4H2O; Hongyan Chemical Reagent; AR 99.5%), 

manganese acetate tetrahydrate (Mn(ac)2•4H2O; Damao Chemical Reagent; AR 

99.0%),  ferric chloride hexahydrate (FeCl3·6H2O; Kemiou Chemical Reagent; AR 

99.0%),ethanol absolute (CH3CH2OH; Guanghua Chemical Reagent; AR 

99.7%),ammonia solution (NH3•H2O;Guanghua Chemical Reagent; AR 25-28%), 

carbon paper were used as received unless stated otherwise. Doubly distilled water 

was used throughout the experiment.



2. Instrumentation

X-ray photoelectron spectroscopy (XPS) was carried out using a Kratos Axis 

Supra spectrometer at room temperature and ultra-high vacuum (UHV) conditions. 

The instrument was equipped with monochromatic Al Kα source 1486.6 eV (15 mA, 

15 kV), and hemispherical analyser with hybrid magnetic and electrostatic lens for 

enhanced electron collection. Survey and detailed XPS spectra were acquired at 

normal emission with the fixed pass energy of 160 eV and 40 eV, respectively. All 

spectra were charge-corrected to the hydrocarbon peak set to 284.6 eV. The Kratos 

charge neutralizer system was used on all specimens. Data analysis was based on a 

standard deconvolution method using mixed Gaussian (G) and Lorentzian (L) line 

shape (G = 70% and L = 30%, Gaussian–Lorentzian product) for each component. 

Spectra were analyzed using CasaXPS software (version 2.3.16). X-ray diffraction 

(XRD) was acquired using (D8 ADV ANCE, Bruker) diffractometer having Cu Kα 

(λ=1.54 Å) source. The instrument was operated at 30 mA current voltage and 40 kV. 

Field emission scanning electron microscope (S-4800, Hitachi, Japan) and 

transmission electron microscope (FEI-Tecnai G2 F20) were used to observe the 

morphology of the catalyst. ICP-AES parameters are the following: forward power 

1350 W, plasma gas flow rate 12.0 L min-1, nebulizer gas flow rate 1.0 L min-1, 

auxiliary gas flow rate 1.0 L min-1, sample uptake speed 50 rpm with white/orange 

Tygon tubing. A concentric nebulizer was used with a cyclonic spray chamber. No 

internal standard correction was applied for ICP-AES analysis.



3. X-ray photoelectron spectroscopy

Figure S1. (a) XPS survey spectra of the Co3O4, Mn3O4,Co2MnO4 and 

Co1.27Mn1.27Fe0.46O4/CP; (b) Deconvoluted high-resolution XPS spectra of the C 1s 

region of Co3O4, Mn3O4,Co2MnO4 and Co1.27Mn1.27Fe0.46O4/CP.

Figure S2. (a) XPS survey spectra of the Co3O4, Mn3O4,Co2MnO4 and 

Co1.27Mn1.27Fe0.46O4/CP after the long-term galvanostatic test; (b) Deconvoluted high-

resolution XPS spectra of the C 1s region of Co3O4, Mn3O4,Co2MnO4 and 

Co1.27Mn1.27Fe0.46O4/CP after the long-term galvanostatic test.



4. X-ray diffraction

Figure S3. XRD patterns of the Co3O4, Mn3O4,Co2MnO4,Co1.27Mn1.27Fe0.46O4/CP and 

carbon paper after long-term galvanostatic test.



5. EDS and ICP-AES

Table S1. Contents of the spinel-type oxides

Atomic Percentage (%)

Co Mn Fe O

Co3O4 EDS 39.56 - - 60.44

Mn3O4 EDS 38.43 - - 61.57

Co2MnO4 EDS 21.74 17.38 - 60.88

ICP-AES 41.74 42.93 15.34 -Co1.27Mn1.27Fe0.46O4

EDS 16.39 15.31 7.89 60.41

Table S2. The amounts of elements dissolved into the electrolytes after long-term 

OER

ICP-AES Co Mn Fe

Co3O4 0.692 - -

Mn3O4 - 0.690 -

Co2MnO4 1.022 0.595 -

Dissolved 
mass (mg)

Co1.27Mn1.27Fe0.46O4 0.401 0.213 0.058

Co3O4 17.31 - -

Mn3O4 - 17.24 -Atomic 
Percentage(%)

Co2MnO4 20.88 13.70 -



Co1.27Mn1.27Fe0.46O4 10.04 5.34 1.45

Table S3. The content of different oxygen groups

Atomic Percentage (%)
XPS

-O -OH -H2O

Co3O4 12.24 45.06 42.69

Mn3O4 74.64 18.97 6.39

Co2MnO4 67.05 23.75 9.20
Before

Co1.27Mn1.27Fe0.46O4 62.10 31.01 6.90

Co3O4 13.81 75.78 10.41

Mn3O4 25.85 41.81 32.34

Co2MnO4 12.62 72.66 14.72
After

Co1.27Mn1.27Fe0.46O4 19.51 38.76 41.73



6. Electrochemistry

Figure S4. (a-d) CV of Co3O4, Mn3O4,Co2MnO4 and Co1.27Mn1.27Fe0.46O4/CP at 

different scan rates (10,20, 40, 60, 80, and 100 mV s-1) in 0.8 - 0.9 V in 1 M HClO4.



Theoretically, a simple electrochemical redox reaction can be described by the Butler-

Volmer equation:

j = j0{exp(-αfη) - exp[(1- α) fη]}        (1)

By taking logarithm of Eq. 1, and assuming the reverse reaction negligible, there is

log j = log j0 + αfη/2.303RT         (2)

where α is the transfer coefficient, f denotes F/RT (F: the Faraday’s constant, R: the 

universal gas constant, T: the absolute temperature), and j0 is the exchange current 

density. Therefore, by plotting the log j vs. η plot, the j0 can be acquired from the 

intercept.

The j0 of MOR for Co3O4, Mn3O4,Co2MnO4 and Co1.27Mn1.27Fe0.46O4/CP are 2.45 × 

10-5 mA cm-2, 2.51 × 10-4 mA cm-2, 1.62 × 10-6 mA cm-2 and 4.58 × 10-8 mA cm-2, 

respectively.

Figure S5. The LSV of the Co3O4, Mn3O4, Co2MnO4 and Co1.27Mn1.27Fe0.46O4/CP 

electrodes in 0.5 M CH3OH + 1 M HClO4 (scan rate 5 mV s-1).

Table S4. EIS fitting results



RS/Ω Error/% RCT/Ω Error/%

Co3O4 10.73 0.172 9.63 1.346

Mn3O4 17.60 0.493 218.90 3.754

Co2MnO4 16.54 0.578 60.51 2.539

Co1.27Mn1.27Fe0.46O4 12.85 0.295 39.87 0.834

Co3O4 after galvanostatic OER test 11.34 0.404 10.72 1.698



7. Activity comparison

Table S5. OER activity comparison in acid

Catalysts Electrolyte η@10 mA 

cm-2/mV

Tafel Slope/

mV dec-1

Stability/h References

Co3O4/CP 0.1 M HClO4 336 74.7 28 This work

Co3O4@C/CP 0.5 M H2SO4 370 82 86.8 [1]

Co3O4/CeO2/FTO 0.5 M H2SO4 423 88.1 >50 h [2]

Ag-Co3O4 0.5 M H2SO4 680 219 12 [3]

Ir-Co3O4 0.5 M H2SO4 225 64.1 130 [4]

P-Co3O4 0.1 M HClO4 400 98 30 [5]

Co3S4@rGO 0.5 M H2SO4 350 65 >8 [6]

RuO2(Co,Mn)3O4/

CC

0.5 M H2SO4 270 77 24 [7]

HNC-Co 0.5 M H2SO4 265 85 - [8]

AlNiCoIrMo 0.5 M H2SO4 233 55.2 - [9]



8. TEM

Figure S6. (a) TEM image of the Co1.27Mn1.27Fe0.46O4; (b) High resolution TEM 

image of the Co1.27Mn1.27Fe0.46O4; (c) SAED pattern of the Co1.27Mn1.27Fe0.46O4; (d) 

Elemental mapping and HAADF image of the Co1.27Mn1.27Fe0.46O4.
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