Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Facile synthesis of V^{4+} -doped and graphene-decorated V_2O_5 /biomass

carbon nanocomposite using graphene quantum dot for supercapacitors

with wide voltage window and high energy density

Yang Chen,^a Li Ruiyi,^a Li Zaijun, *^a Cai Tongxiang,^b Yang Yongqiang^c and Liu

Xiaohao*ª

^a School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China

^b Yadea Technology Group Co., Ltd, Wuxi 214000, China

^c National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute Branch of Wuxi, Wuxi 214174, China

1. Experimental

1.1. Materials and reagents

Citric acid (CA), serine (Ser), histidine (His) and boric acid (H₃BO₃) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). NH₄VO₃ was purchased from Aladdin. Silver nanowires (Ag NW) in isopropanol (5 mg mL⁻¹) was purchased from Jiangsu XFNANO Materials Tech Co., Ltd. B/GQD was prepared according to reported in the literature. The solid electrolyte (PVA/Li₂SO₄) was prepared by adding 2.0 g polyvinyl alcohol (PVA) and 10 mL of 3 mol L⁻¹ Li₂SO₄ solution in 20 mL ultrapure water and then heated at 75°C with stirring until a clear homogeneous solution was formed. Rambutan was purchased from Hainan Province and then rambutan peel was collected, followed by washing in distilled water and freeze-dried for use.

1.2. Material characterization

The morphology and structure of as-synthesized materials was characterized by scanning electron microscope (SEM, JEOL, S-4800) and transmission electron microscope (TEM, JEOL, Jem-2100). The crystal structure and chemical composition of as-synthesized materials was studied by X-ray diffraction (XRD, Bruker D8 ADVANCE, Cu K α radiation, $\lambda = 0.15406$ nm). The valence states of as-synthesized materials were characterized by X-ray photoelectron spectroscopy (XPS, Kratos, Axis supra) with mono chromated Al KR radiation. The band gap of as-synthesized materials was evaluated by obtaining UV-visible diffuse reflectance spectra by UV-visible spectrophotometer (UV-vis, Shimadzu, UV-3600 Plus). The oxygen vacancies of as-synthesized materials were characterized by the electron paramagnetic resonance spectra (EPR, Bruker EMX PLUS, X-band≈9.8 GHz). The morphology of rambutan peel was characterized by ultra-depth three-dimensional microscope (Keyence, VHX-1000C).

1.3 S/H-GQD-B synthesis

S/H-GQD-B was synthesized using one reported procedure.¹ In a typical synthesis, 0.1 mole of citric acid, 0.1 mole of histidine, 0.02 mole of serine and 0.02 mole of H₃BO₃ were mixed in in 50 mL deionized water. The solution was heated at 90°C under stirring until all free water molecules were removed from the system. Followed by thermal treatment at 180°C for 3 h. The formed S/H-GQD-B crude product was dispersed in ultrapure water to form 100 mg mL⁻¹ S/H-GQD-B solution. Adjusted its acidity to pH 7.0 by dropping 1 mol L⁻¹ NaOH solution, dialyzed in dialysis bag with molecular weight cut-off of 3000 Da and freeze-dried. The resultant S/H-GQD-B solid was stored in dark at 4°C before use.

1.4 Electrochemical measurements

The three-electrode testing system and flexible symmetrical supercapacitor were employed for

2

evaluating electrochemical performance of V₂O₅-S/H-GQD-B/BC. The three-electrode testing system consists of titanium sheet working electrode (1cm×1cm) bearing V₂O₅-S/H-GQD-B/BC, platinum foil counter electrode (1cm×1cm), saturated calomel reference electrode and 1.0 mol L⁻¹ Li₂SO₄ electrolyte. To prepare working electrode, V₂O₅-S/H-GQD-B/BC (90 wt.%), carbon black (5 wt.%) and polyvinylidene difluoride (PVDF)(5 wt.%) were dispersed in N-methyl-2-pyrrolidinone and homogenized on one ball mill for 24 h to form stable paste. The paste containing 1-5 mg of active mass was coated on the titanium sheet surface, dried for 24 h and pressed under 5 MPa in sequence.

Cyclic voltammogram (CV), chronoamperometry (CA), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge curves were carried out on CHI 660D electrochemical workstation. For EIS measurements the potential amplitude of ± 5 mV and frequency of 0.01-10⁵ Hz were adopted. The specific capacitance of single electrode in three-electrode testing system (C_g) were calculated by according to the equation (1).² In the equation, C_g, I, m, Δ V and t presents the gravimetric capacitance (F g⁻¹), current (A), the active mass (g), potential range (V) and discharging time (s), respectively.

$$C_g = \frac{lt}{m\Delta V} \tag{1}$$

The specific capacitance (C_{g2}), energy density and power density of symmetric supercapacitor can be calculated by according to the equations (2, 3 and 4).² The C_{g2} presents the gravimetric capacitance (F g⁻¹) of a single electrode. E_g (W h g⁻¹) and P_g (W g⁻¹) present the gravimetric energy density and gravimetric power density basing on the total active material in the cell, respectively. I, ΔV and t present the current (A), the active mass of active material in single electrode (g), potential range and discharging time (s).

$$C_{g2} = \frac{2It}{m\Delta V} \tag{2}$$

$$E_g = \frac{C_{g2}\Delta V^2}{8 \times 3.6} \tag{3}$$
$$E_{g2} \times 3600$$

$$P_g = \frac{L_{g2} \times 5000}{t_{discharge}} \tag{4}$$

References

- N. Wang, R. Y. Li, Q. S. Wang, Y. Q. Yang, N. N. Li, Z. J. Li, New J. Chem., 2021, 45 (37), 17258-17265.
- Y. Dai, L. P. Ma, J. Q. Hu, J. H. Wang, H. Yan, H. Y. Zhang, H. Q. Wang, C. Y. Lai, W. R. Li, J. C. Zheng, *Electrochim. Acta*. 2021, 371 (1),137792.