Supporting Information

Synergy of Oxygen Vacancies and Bi nanoparticles on BiOBr nanosheets for Enhanced Photocatalytic H₂O₂

Production

Li Feng, Hanping Fu, Tianxiang Zhang, Qing Zhang, Shufen Ren, Jianyun Cheng, Qingshuang Liang*, Xiufeng Xiao*

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China

Fig. S1 XRD pattern of different samples.

Fig. S2 (a-d) Mott-Schottky plot and (e) VB-XPS spectra of different samples.

Fig. S3 XRD of fresh and reused Bi/BiOBr-2.

The main procedure of the cycling experiments was the same as in the photocatalytic H_2O_2 production experiments. At the end of each cycle, in order to reduce the possible loss of photocatalyst, the obtained suspension solution was centrifuged, washed once with water and redispersed directly in 40 mL of aqueous solution containing 5% formic acid. The next cycle of the stability test was then started.

Fig. S4 Effects of various scavengers on photocatalytic $\mathrm{H_2O_2}$ production by Bi/BiOBr-2.

Table. S1 C	omparison of	photocatalytic	H ₂ O ₂ production	with Different	Catalysts
-------------	--------------	----------------	--	----------------	-----------

Catalysts	Dosage (mg)	energy	Reaction solution	H ₂ O ₂ production μmol /h
C-P-CN ¹	50	300 W Xenon lamp	EtOH/water solution	166
MIL-125-PDI ²	5	500 W Xenon lamp	CH ₃ CN/ solution	240
g-C ₃ N ₄ ³	20	2 KW Xe arc lamp>420 nm	alcohol/water solution	13.3
Au/TiO ₂ ⁴	200	UV	8 mL EtOH	50
BiOC1 ⁵	50	150 W Ultrasonic cleaner	water	28
Bi/BiOCl ⁶	50	300 W Xe lamp	HCOOH/water solution	5400
Bi/BPNs/P- BiOC1 ⁷	50	300W xenon lamp	10% volume isopropanol solution	4920

Pt/Bi ₂ WO ₆ ⁸	65	150 W Xe arc lamp >400 nm	phenol/water solution	5
CoWO ₄ /Bi ₂ WO ₆	50	300 W Xenon lamp with a 420 nm cut-off filter	Water (adjusting the pH with HClO ₄)	<50
Au/BiVO4 ¹⁰	50	Xe arc lamp >420 nm	EtOH/water solution	257
xrGO–BiVO ₄ ¹¹	8	Newport solar simulator with an AM 1.5 air filter	Water (PH=3)	<175
This work	50	300 W Xe lamp	HCOOH/water solution	5045

Reference

1. W. Wei, L. Zou, J. Li, F. Hou, Z. Sheng, Y. Li, Z. Guo and A. Wei, *Journal of Colloid and Interface Science*, 2023, **636**, 537-548.

2. X. Chen, Y. Kondo, S. Li, Y. Kuwahara, K. Mori, D. Zhang, C. Louis and H. Yamashita, *Journal of Materials Chemistry A*, 2021, **9**, 26371-26380.

3. Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa and T. Hirai, *ACS Catalysis*, 2014, 4, 774-780.

4. M. Teranishi, S.-i. Naya and H. Tada, *The Journal of Physical Chemistry C*, 2016, **120**, 1083-1088.

5. D. Shao, L. Zhang, S. Sun and W. Wang, *ChemSusChem*, 2018, 11, 527-531.

6. L. Liu, H. Fu, Y. Zeng, L. Feng, T. Zhang, Q. Liang and X. Xiao, *New Journal of Chemistry*, 2022, **46**, 22419-22426.

7. H. Ma, Y. Wang, Z. Zhang, J. Liu, Y. Yu, S. Zuo and B. Li, *Chemosphere*, 2023, **330**.

8. J. Sheng, X. Li and Y. Xu, ACS Catalysis, 2014, 4, 732–737.

9. J. Wang, L. Yang and L. Zhang, *Chemical Engineering Journal*, 2021, **420**.

10. H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, *ACS Catalysis*, 2016, **6**, 4976-4982.

11. N. Dhabarde, O. Carrillo-Ceja, S. Tian, G. Xiong, K. Raja and V. R. Subramanian, *The Journal of Physical Chemistry C*, 2021, **125**, 23669-23679.