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Materials

All the experiments were conducted under an ambient condition only if specifically stated to the
use of an inert atmosphere. All the chemicals and solvents were used as received from the suppliers
without further purification. Reagents, 2-bromopyridine (99%), propargyl bromide (87%), p-
cresol (99%) were purchased from Spectrochem, India. Solvents hexane, ethyl acetate was
purchased from Finar limited company. The A3 coupling reactions were performed in an ambient
atmosphere to 70 °C. For inert atmosphere reactions, acetonitrile was dried using conventional
method and was distilled before use. Normal (particle size: 100-200 mesh) and flash (particle size:
230400 mesh) silica gels were used for column chromatography, and they were purchased from
Qualigens-TM (India), Spectrochem (India), and Rankem (India). To monitor the progress of
chemical reactions, TLC plates covered with silica gel (Kiesel 60-F254, Merck (India)) were
utilized. UV light was the visualizing agent that was used for TLC. All the solvents were dried and
concentrated using BUCHI's Rotavapor R-210. The supplied analytical-grade solvents, such as
MeOH and EtOH, were all utilized without any previous purification. The chemicals and reagents
acquired from Sigma Aldrich Chemicals Company (USA), TCI (India) Pvt. Ltd., Merck (India),
and/or Spectrochem (India), were utilized as received. Deuterated solvent CDCl; and DMSO-dg

were used to record the NMR spectrum of the synthesized compounds.

Instrumentation

Nuclear magnetic resonance spectra were recorded on a JEOL ECS-400 spectrometer operating at
400 MHz for 'H NMR and 101 MHz for *C{'H} NMR respectively. Tetramethyl silane (TMS)
(0.00 ppm) was used as a reference internal solvent to record 'H and 1*C{!H} NMR spectra for all

the compounds. During analysis of 'H NMR spectra proton peak for CDCl; was fixed at 7.246



ppm and the carbon peak was fixed at 77.0 ppm. '"H NMR patterns of chemical shifts were
characterized in parts per million (ppm). The terms singlet (s), doublet (d), double of doublet (dd),
triplet (t), and multiplet (m) were used to describe peak splitting patterns. The coupling constant
(/) values are given in Hertz (Hz). The Xevo G2-SQ-Tof (Waters, USA) was used to examine
high-resolution electron impact mass spectra (HR-EIMS), which are compatible with ACQUITY
UPLC® and nano ACQUITY UPLC® systems. The melting point of ligand and complex were
determined on an analog melting point apparatus. The Bruker single crystal X-ray diffractometer

was used to determine the crystallography study of Ag-complexes.

Ligand Synthesis and characterization
Synthesis of 2-((4-((p-tolyloxy) methyl)-1H-1,2,3-triazol-1-yl) methyl)pyridine (tmtmp) (2)

The ligand 2-((4-((p-tolyloxy) methyl)-1H-1,2,3-triazol-1-yl)methyl)pyridine was synthesized by
stirring at room temperature in a round-bottom flask on a magnetic stirrer. In a round bottom flask
(0.146 g, 1.00 mmol) (1-(ethynyloxy)-4-methylbenzene solution was made in methanol to which
(0.147g, 1.1 mmol) 2-(azidomethyl)pyridine was added. Cu(OAc), (2 mol%) was added to the
solution and the resulting solution was stirred for 24h. After the reaction had reached completion,
the workup was done with water (10 mL) and ethyl acetate (3 x 20 mL). Then, the combined
organic layers were dried using anhydrous Na,SO,, filtered, and then concentrated under reduced
pressure to afford the crude residue that was further purified utilizing column chromatography on
silica gel (100—200 mesh) (99:1 - Chloroform/MeOH). The solvent was removed under reduced
pressure and off-white crystalline solid of product was obtained. Yield — 73% (0.280g), based on
1-(ethynyloxy)-4-methylbenzene. Mp: 92-94 °C. 'H NMR (400 MHz, Chloroform-d): & 8.58 (s,
1H), 7.73-7.62 (m, 2H), 7.24 — 7.18 (m, 2H), 7.01 — 6.99 (m, 2H), 6.80 (dd, J = 8.8, 3.2 Hz, 2H),
5.58 (s, 2H), 5.10 (s, 2H), 2.20 (s, 3H); 13C {'H} NMR (101 MHz, Chloroform-d): 6 156.2, 154.4
137.4, 130.6, 130.0, 123.6, 114.7, 62.2, 55.9, 20.6. HRMS (ESI*) m/z calcd. for C;sH;sN4O ([M +
H]") 281.1397; found 281.1398. IR Vpyex (cm!): 3132 (m, Cypo-H stretch.), 3087 (w, triazole)!, 2917



(m, Cyp3-H stretch.), 1611 (w, C=Cgy, stretch.), 1473 (m, Cyp3-H stretch.), 1242 (s, Cyp3-O stretch.),
814 (s, C=Csy, bend)?. Elemental analysis for CisH;cN4O: found: C, 69.05; H, 5.72; N, 18.54.
Calculated: C, 68.55; H, 5.75; N, 19.19.

Synthesis of 2-(4-((p-tolyloxy)methyl)-1H-1,2,3-triazol-1-yl)pyridine (tmtp) (3)

The ligand 2-((4-((p-tolyloxy)methyl)-1H-1,2,3-triazol-1-yl))pyridine was synthesized by
refluxing in a round-bottom flask on oil bath at 60 °C. In a round bottom flask (0.146 g, 1 mmol)
1-(ethynyloxy)-4-methylbenzene solution was made in chloroform to which (0.132 g, 1.1 mmol)
2-azidopyridine was added followed by (0.258 g, 2 mmol) DIPEA. CuBr (0.028 g, 0.2 mmol) was
added as a catalyst to the solution and the resulting solution was refluxed for 6h. After the reaction
had reached completion, the reaction mixture was cooled to room temperature and then the workup
was done with water (10 mL) and dichloromethane (3 x 20 mL). Then, the combined organic
layers were dried using anhydrous Na,SQOy, filtered, and then concentrated under reduced pressure
to afford the crude residue that was further purified utilizing column chromatography on silica gel
(100—200 mesh) (70:30 — Hexane /EtOAc). The solvent was removed under reduced pressure and
brown needle shaped crystalline solid product was obtained. Yield — 75% (0.199 g), based on 1-
(ethynyloxy)-4-methylbenzene. Mp: 126-128 °C. 'TH NMR (400 MHz, Chloroform-d): & 8.57 (s,
1H), 8.43 — 8.42 (m, 1H), 8.12 (d, /= 8.0 Hz, 1H), 7.86 — 7.82 (m, 1H), 7.29 — 7.26 (m, 1H), 7.02
(dd, J= 8.8, 0.8 Hz, 2H), 6.85 (dd, J= 6.4, 2.4 Hz, 2H), 5.21 (d, /= 0.8 Hz, 2H), 2.21 (s, 3H); 1*C
{'H} NMR (101 MHz, Chloroform-d): & 156.1, 149.1, 148.6, 144.9, 139.3, 130.7, 130.1, 123.8,
120.4, 114.8, 114.0, 62.0, 20.6. HRMS (ESI") m/z caled. for C;sH;4N4O ([M + HJ") 267.1241;
found 267.1229. IR vpax (cmt): 3135 (w, Cypp-H stretch.), 3090 (w, triazole)!, 2915 (w, Cqy3-H
stretch.), 1240 (s, Cy3-O stretch.), 817 (s, C=Cgy, bend.)? Elemental analysis for C;sH;4N4O:
found: C, 68.25; H, 5.20; N, 20.85. Calculated: C, 67.65; H, 5.30; N, 21.04.

Synthesis of compound and characterization

Compound 4



For the synthesis of compound 4 the tmtmp ligand (0.280 g, 1 mmol) solution was made in
methanol (1 ml) in a 50 ml round bottom flask and to it methanolic solution of AgNO; (0.171 g,
1.01 mmol) was added dropwise. The round bottom flask was covered with foil paper due to the
light sensitivity of the complex and was stirred at room temperature for 12h. After the completion
of the reaction, the reaction mixture was filtered using a Buchner funnel. A white solid was
obtained as product which was dried and kept in dark. Yield — 61% (0.593 g), based on ligand
(tmtmp). Mp: 178-180 °C. 'H NMR (400 MHz, Acetonitrile-d3): & 8.47 — 8.45 (m, 2H), 7.95 (s,
2H), 7.76 — 7.72 (m, 2H), 7.29 — 7.26 (m, 4H), 7.01 (dd, J=9.2, 0.8 Hz, 4H), 6.80 — 6.77 (m, 4H),
5.60 (s, 4H), 5.02 (s, 4H), 2.17 (s, 6H); 3C {'"H} NMR (101 MHz, Acetonitrile-d3): 6 156.2, 154.5,
150.2, 144.2, 137.9, 130.5, 130.00, 125.00, 123.8, 122.0, 114.7, 61.3, 55.4, 19.5. HRMS (ESI*)
m/z caled. for [M-2NO5]** =387.0370; found 387.0366. IR vyax (cm™): 3133 (m, Cypo-H stretch.),
3088 (m, triazole) 2919 (m, Cqy3-H stretch.), 1378 (s, N=0 stretch.), 1242 (s, Cyp3-O stretch), 816
(m, C=Cjp, bend)?. Elemental analysis for C3,H3,Ag,N¢Os: Satisfactory elemental analysis data

was not obtained despite several attempts.

Compound 5

For the synthesis of compound 5 the (tmtp) ligand (0.266 g, 1 mmol) solution was made in
methanol (1 ml) in a 50 ml round bottom flask and to it methanolic solution of AgNO; (0.171 g,
1.01 mmol) was added dropwise. The round bottom flask was covered with foil paper due to the
light sensitivity of the complex and was stirred at room temperature for 12h. After the completion
of the reaction, the reaction mixture was filtered using a Buchner funnel. A white solid was
obtained as product which was dried and kept in dark. Yield — 58% (0.561 g), based on ligand

(tmtp). Mp: 210-213 °C. '"H NMR (400 MHz, Acetonitrile-ds) § 8.61 (s, 2H), 8.46 (ddd, J = 4.8,



2.0, 0.8 Hz, 2H), 8.05-8.03 ( 2H), 7.97 — 7.93 (m, 2H), 7.40 - 7.37 (m, 2H), 7.04 (dd, J = 8.8, 0.8
Hz, 4H), 6.88 —6.84 (m, 4H), 5.14 (s, 4H), 2.10 (s, 6H); 3C{'H} NMR (101 MHz, Acetonitrile-d3):
0 155.8, 148.6, 144.2, 139.4, 130.2, 129.6, 123.9, 120.7, 114.4, 113.5, 60.9, 19.2. HRMS (ESI*)
m/z calcd. for [M-2NO;]>" =373.0213; found 373.0207. IR Vpax (cm!): 3138 (w, Cypo-H stretch.),
3087 (w, triazole)!, 1587 (m, N=O stretch.), 1240 (s, C3-O stretch.), 817 (s, C=Csy, bend.)>.
Elemental analysis for C;gH,3Ag,N;¢Og: Satisfactory elemental analysis data was not obtained

despite several attempts.

X-ray crystallography

2-D polymeric structure of complex 4

Fig. S1 C-H: -7 interaction to generate 2D polymeric structure of complex 4



Comparison table with respect to previous work [Table 1]

Ag-nanoparticle Cu-based Metal organic
framework

[catalyst: 75 mg; time:1 h; EtOH; 80 °C]

Catalyst Reaction conditions References
X
NJ" [catalyst: 3.0 mol%; time: 4.5 h
N-Ag—N catalyst: 3.0 mol%; time: 4.5 h; MW;
Q/ |gj Toluene; 150 °C] ’
B\
Br
S
. M [Cul: 4 mol%, 5j: 3.0 mol%; time: 12 h; SA A
H ” CF; MS; DCM; 0 °C]
Cul Os_NH
with 5j
COOH
5j
[Ag(IPr),]PF, [catalyst: 3.0 mol%; time: 1 h; MW; MeOH; 5
110 °C]
Ag-metalloligand based polymer [catalyst: 1.0 mol%; time: 1 h; neat; 80 °C] 6
[catalyst: (0.5- 2 mol%); time:12 h; iPrOH; 7
Ag—N, /N, 90° C]
Inorganic-()rganic hybrld Ag- [catalyst: 0.5 mol%; time:6 h; ACN; RT] 8
polyoxometalates
OMe OMe
_N UN\/Q _N UN\/Q [catalyst: 3 mol%; time:6 h; 80 °C; Au-NHC 9
\( \( catalyst most effective]
Agl AuCl
CF3S0;
Ts—N—Angr—N—Ts [catalyst: 5 mol%; time:5 h; DES; 60 ° C] 10
|
Q/Nj
Ag-nanoparticle Zr-based Metal organic [catalyst: 20 mg; time:6 h; ACN; 80 °C] 11
framework
12




General catalytic protocol for synthesis of propargyl amines

Procedure 1

o O !
Ag catalyst
o FE— N
1 equiv 1.1 equiv 1.3 equiv O

A mixture of aldehyde (I mmol), amine (1.1 mmol), alkyne (1.3 mmol), Ag catalyst (catalyst 4,

0.25 mol%) was placed in a sealed tube in the absence of solvent and the reaction mixture was
heated at 70°C for Sh. The reaction mixture was cooled to room temperature and then the workup
was done with water (10 mL) and ethyl acetate (3 x 20 mL). Then, the combined organic layers
were dried using anhydrous Na,SO,, filtered, and then concentrated under reduced pressure to
afford the crude residue that was further purified utilizing column chromatography on silica gel
(100—200 mesh) (99:1 to 95:5 - Hexane/EtOAc). The solvent was removed under reduced pressure
and products were obtained as pale-yellow oily liquids. In good yield of about 81 — 98%.

Procedure 2

7 0 = N
Z + ! 54_ J]\ Ag catalyst , Z O
N H™ H RT
H

1 equiv 2.8 equiv 5.6 equiv

A mixture of aldehyde (1 mmol), amine (2.8 mmol), alkyne (5.6 mmol), Ag catalyst (catalyst 4,
0.25 mol%) was placed in a sealed tube in the absence of solvent and the reaction mixture was
stirred at room temperature for 2h. The workup was done with water (10 mL) and ethyl acetate (3

x 20 mL). Then, the combined organic layers were dried using anhydrous Na,SO,, filtered, and



then concentrated under reduced pressure to afford the crude residue that was further purified
utilizing column chromatography on silica gel (100—200 mesh) (99:1 to 95:5 - Hexane/EtOAc).
The solvent was removed under reduced pressure and propargylamines were obtained as pale-

yellow oily liquid.

Characterization data for A3 coupling products

S.No Substrate Data analysis
The reaction of aromatic aldehyde (I mmol), alicyclic
O secondary amine (1.1 mmol) and phenyl acetylene (1.3
N mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can

9aaa afford compound 9aaa in 95% (0.248g) yield as a

O AN according to the general procedure A.
'"H NMR (400 MHz, Chloroform-d) 8 7.55 — 7.53 (m, 2H),
7.42 —7.40 (m, 2H), 7.30 — 7.21 (m, 6H), 4.84 (s, 1H),

2.66 —2.63 (m, 4H), 1.75 - 1.71 (m, 4H). Spectral data
are in good agreement with literature values®”’.

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
9baa O mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9baa in 93% (0.271g) yield as an

according to the general procedure A.
O \\ 'H NMR (400 MHz, Chloroform-d) & 7.48 (d, J = 8.4 Hz,
MeO O 2H), 7.42 — 7.40 (m, 2H), 7.25 — 7.22 (m, 3H), 6.81 (d, J
= 8.8 Hz, 2H), 4.89 (s, 1H), 3.72 (s, 3H), 2.75 — 2.69 (m,
4H), 1.78 — 1.74 (m, 4H). Spectral data are in good

agreement with literature values’.

The reaction of aromatic aldehyde (1 mmol), alicyclic
O secondary amine (1.1 mmol) and phenyl acetylene (1.3

mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9caa in 91% (0.250g) yield as a

O AN according to the general procedure A.
O 'H NMR (400 MHz, Chloroform-d) & 7.42 —7.39 (m, 4H),
7.23 —7.22 (m, 3H), 7.09 — 7.07 (m, 2H), 4.79 (s, 1H),
2.65 — 2.61 (m, 4H), 2.27 (s, 3H), 1.74 — 1.70 (m, 4H).

9caa




Spectral data are in good agreement with literature
values’.

9daa

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9daa in 87% (0.258g) yield as a
according to the general procedure A.

'"H NMR (400 MHz, Chloroform-d) & 7.47 (dd, J= 6.4, 2
Hz, 2H), 7.42 — 7.39 (m, 2H), 7.26 — 7.23 (m, SH), 4.80
(s, 1H), 2.62 —2.58 (m, 4H), 1.75 — 1.68 (m, 4H). Spectral
data are in good agreement with literature values’.

9eaa

The reaction of aromatic aldehyde (I mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9eaa in 81% (0.225g) yield as a
according to the general procedure A.

"H NMR (400 MHz, Chloroform-d) 6 7.49 —7.45 (m, 3H),
7.32 —17.27 (m, 4H), 7.17 — 7.14 (m, 1H), 6.84 — 6.79 (m,
2H), 5.30 (s, 1H), 2.89 — 2.79 (m, 4H), 1.86 — 1.82 (m,
4H). Spectral data are in good agreement with literature
values’.

9aba

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9aba in 84% (0.231g) yield as a
according to the general procedure A.

'H NMR (400 MHz, Chloroform-d) & 7.68-7.65 (m, 2H),
7.55 — 7.52 (m, 2H), 7.43 — 7.30 (m, 6H), 4.83 (s, 1H),
2.60-2.58 (m, 4H), 1.64-1.59 (m, 4H), 1.49-1.44 (m, 2H).
Spectral data are in good agreement with literature
values!3:14,

9aca

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9aca in 86% (0.239g) yield as a
according to the general procedure A.

'"H NMR (400 MHz, Chloroform-d) & 7.58 (d, /= 6.8 Hz,
2H), 7.46 — 7.43 (m, 2H), 7.32 — 7.24 (m, 6H), 4.75 (s,
1H), 3.70 — 3.66 (m, 4H), 2.60 — 2.58 (m, 4H). Spectral
data are in good agreement with literature values'.

10




9faa

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9faa in 89% (0.190g) yield as a
according to the general procedure A.

'"H NMR (400 MHz, Chloroform-d) 8 7.37 — 7.35 (m, 2H),
7.23 —7.21 (m, 3H), 3.55-3.51 (m, 1H), 2.73 — 2.62

(m, 4H), 1.76 — 1.67 (m, 6H), 1.04 — 1.00 (m, 3H).
Spectral data are in good agreement with literature
values'S.

9gba

The reaction of aromatic aldehyde (1 mmol), alicyclic
secondary amine (1.1 mmol) and phenyl acetylene (1.3
mmol) and Ag catalyst (0.25 mol %) at 90°C for 5 h can
afford compound 9gba in 86% (0.208g) yield as a
according to the general procedure A.

'"H NMR (400 MHz, Chloroform-d) 8 7.38 — 7.36 (m, 2H),
7.24 —7.22 (m, 3H), 3.51 — 3.48 (m, 1H), 2.71 — 2.66 (m,
2H), 2.51 —=2.47 (m, 2H), 1.71 — 1.64 (m, 3H), 1.60 — 1.49
(m, 4H), 1.44 —1.37 (m, 3H), 0.92 — 0.88 (m, 3H). Spectral
data are in good agreement with literature values'.

S.No

13aaa

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13aaa in 98% (0.181g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) 6 7.37 — 7.34 (m,
2H), 7.22 — 7.20 (m, 3H), 3.56 (s, 2H), 2.64 — 2.61 (m,
4H), 1.78 — 1.74 (m, 4H). Spectral data are in good
agreement with literature values!”.

13aba

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13aba in 96% (0.191g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) 6 7.36 — 7.34 (m,
2H), 7.20—-7.18 (m, 3H), 3.39 (s, 2H), 2.49 (s, 4H), 1.56
(m, 4H), 1.36 (s, 2H). Spectral data are in good
agreement with literature values®.

11




13aca

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13aca in 95% (0.191g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) § 7.38 — 7.35 (m,
2H), 7.24 — 7.22 (m, 3H), 3.71 — 3.69 (m, 4H), 3.44 (s,
2H), 2.59 — 2.57 (m, 4H). Spectral data are in good
agreement with literature values®.

13bba

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13bba in 95% (0.248g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) & 7.31 — 7.29 (m,
2H), 7.25 - 7.22 (m, 2H), 3.40 (s, 2H), 2.50 (s, 4H), 1.60
—1.54 (m, 4H), 1.37 (d, J = 5.6 Hz, 2H), 1.22 (s, 9H).

Spectral data are in good agreement with literature values
18,19

13cba

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13cba in 98% (0.223g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) 6 7.28 (d, /= 8.4 Hz,
2H), 7.04 (d, J = 8.0 Hz, 2H), 3.41 (s, 2H), 2.58 — 2.52
(m, 6H), 1.61 — 1.53 (m, 4H), 1.40 - 134 (m, 2H), 1.16 —
1.11 (m, 3H). Spectral data are in good agreement with
literature values®.

13dba

The reaction of phenyl acetylene (1 mmol), alicyclic
secondary amine (2.8 mmol), formaldehyde (5.6) and
Ag catalyst (0.25 mol %) at RT for 5 h can afford
compound 13dba in 91% (0.194g) yield as a according
to the general procedure B.

'H NMR (400 MHz, Chloroform-d) 8 7.33 (d,J= 7.6 Hz,
1H), 7.15 = 7.10 (m, 2H), 7.07 — 7.03 (m, 1H), 3.55 (s,
2H), 2.60 (s, 4H), 2.36 (s, 3H), 1.66 — 1.60 (m, 4H), 1.41
—1.38 (m, 2H). Spectral data are in good agreement with
literature values?.
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Spectral data of Ligands, catalyst and A3 coupling product
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Characterization data of A3 coupling product 9aaa-9gba and 13aaa-13dba.
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