Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Fabrication of amorphous Co/Mo–MnSe_x electrode materials for high-performance hybrid supercapacitors

Qian Zhang^a, Guoxiang Wang^{a,*}, Taipu Chen^{b, c} Hao Wu^a, Rui Yuan^a, Boyan Ai^a,

Pengchao Liang^{a,} Dahui Fang^b, Qingwang Min^{a,}*

^a School of Light Industry & Chemical Engineering, Dalian Polytechnic University,

Dalian 116034, China.

^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China

^c University of Chinese Academy of Sciences, Beijing 100039, China

Author Contributions

*Corresponding author.

E-mail address: wanggx1000@126.com (G.X. Wang)

E-mail address: minqw@dlpu.edu.c

The specific capacitance (C, F g^{-1}) is calculated from the GCD curve according to Equation (1).

$$C = \frac{I \times \Delta t}{m \times \Delta v} \tag{1}$$

Specific capacitances derived from GCD curves in the two electrode (C, F g^{-1}) system were counted by formula (2):

$$C = \frac{2i_m \int V dt}{V_1^2 - V_0^2}$$
(2)

The energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹) in the two electrodes were calculated using the following two formulas.

$$E = \frac{1/2C(\Delta V)^2}{3.6}$$
(3)
$$P = \frac{E \times 3600}{\Delta t}$$
(4)

Where *t* denotes the discharge time (s), m is the quality of active material (g), I is the discharge current (A), V is the potential change during the discharge process (V) and $i_{\rm m}$ is the current density (A g⁻¹).

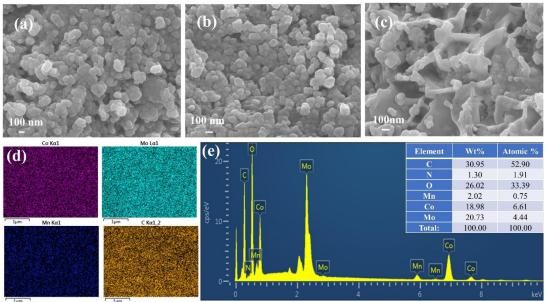
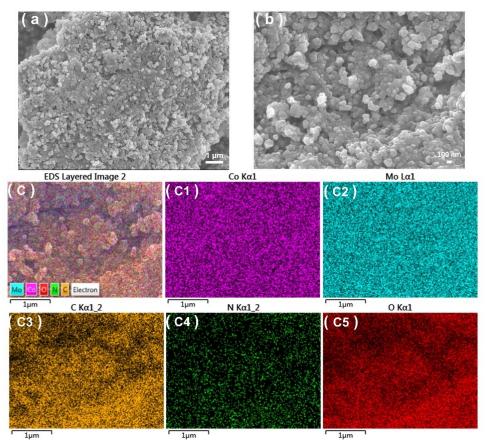
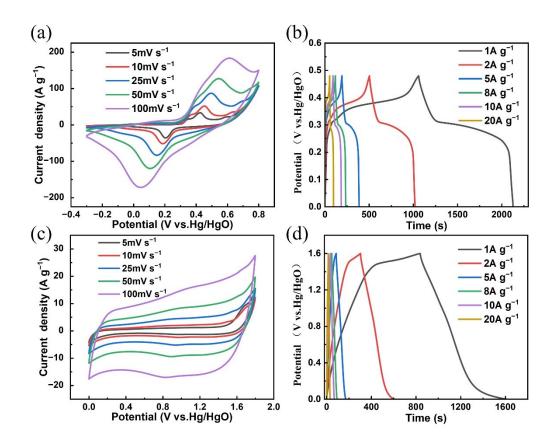




Fig. S 1. SEM images of (a) Co/Mo–MOF, (b) Co/Mo–MOF–Mn, (c) Co/MoSe_x,

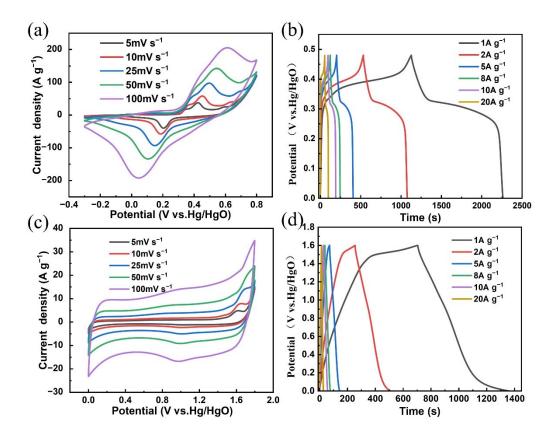

(d) Elemental mapping and (e) EDS image of Co/Mo–MOF–Mn.

Fig. S 2. (a, b) SEM images and (c) EDS mapping distribution of Co/Mo–MOF.

Fig. S 3. (a, c) CV curves at various scan rates and (b, d) GCD curves at various densities of Co/Mo–MOF and Co/Mo–MOF//AC.

Fig. S 4. (a, c) CV curves at various scan rates and (b, d) GCD curves at various densities of Co/Mo–Mn and Co/Mo–Mn//AC.

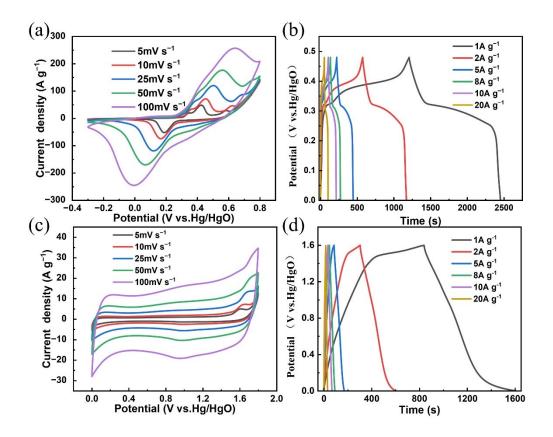


Fig. S 5. (a, c) CV curves at various scan rates and (b, d) GCD curves at various densities of Co/MoSe_x and Co/MoSe_x //AC.

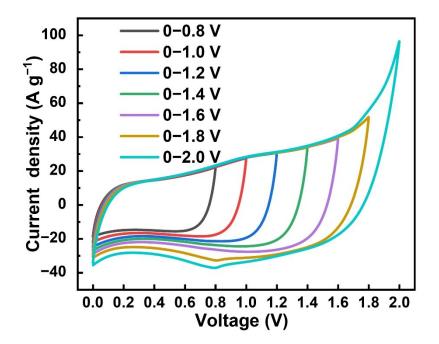


Fig. S 6 CV curves of CO/Mo–MnSe_x//AC at different potential ranging from 0.8 to 2.0 V at 100 mV s⁻¹.

Sample	R_s/Ω	R_{ct}/Ω
CO/Mo-MOF	0.67	3.14
CO/Mo-MOF-Mn	0.67	4.05
CO/MoSex	0.62	6.32
CO/Mo–MnSe _x	0.59	1.88

Table. S 1 Results of EIS fitting for four samples.

Devices	Power density (W kg ⁻¹)	Energy density (Wh kg ⁻¹)	Reference
Co-Mo-Se//AC	1094.0	44.7	1
CoSe ₂ //AC	387.0	18.9	2
MnSe ₂ @MoSe ₂ //AC	747.0	75.0	3
CuSe ₂ @MoSe ₂ //AC	746.0	113.0	4
MCSe-3h/rGO//AC	853.1	45.8	5
NMSe/rGO-140//AC	800.7	51.4	6
MNSe@NF//AC@NF	858.4	66.0	7
This work	496.0	141.3	This work

Table. S 2 Energy density of Co/Mo–MnSe $_x$ //AC compared with other reported high-performance HBS.

References

- 1. C. Miao, C. Zhou, H.-E. Wang, K. Zhu, K. Ye, Q. Wang, J. Yan, D. Cao, N. Li and G. Wang, *Journal of Power Sources*, 2021, **490**, 229532.
- S. Liu, S. Sarwar, J. Wang, H. Zhang, T. Li, J. Luo and X. Zhang, *Journal of Materials Chemistry C*, 2021, 9, 228-237.
- 3. M. S. Vidhya, R. Yuvakkumar, P. S. Kumar, G. Ravi and D. Velauthapillai, *Topics in Catalysis*, 2021, **65**, 615-622.
- 4. M. S. Vidhya, R. Yuvakkumar, P. S. Kumar, G. Ravi, D. Velauthapillai and P. N. Asrami, *Topics in Catalysis*, 2022, **65**, 668-676.
- 5. H. Xuan, G. Zhang, X. Han, R. Wang, X. Liang, Y. Li and P. Han, *Journal of Alloys and Compounds*, 2021, **863**, 158751.
- 6. G. Zhang, H. Xuan, J. Yang, R. Wang, Z. Xie, X. Liang, P. Han and Y. Wu, *Journal of Power Sources*, 2021, **506**, 230255.
- B. Ameri, A. Mohammadi Zardkhoshoui and S. S. Hosseiny Davarani, *Dalton Trans*, 2021, 50, 8372-8384.