Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

SUPPORTING INFORMATION

Exigent carbon nanodots for trapping 6-thioguanine to resist fire blight caused by *Erwinia amylovora* in an orchard

Shrodha Mondal,
a Jiko Raut, a Olivia Sarkar, b Santi M. Mandal $^{\rm c}$ An
suman Chattopadhyay, b Prithidipa Sahoo, *a

^aDepartment of Chemistry, Visva-Bharati University, Santiniketan-731235, India

^bDepartment of Zoology, Visva-Bharati University, Santiniketan-731235, India

^cCentral Research Facility, Indian Institute of Technology Kharagpur, 721302, India

*Correspondence to: Prithidipa Sahoo (Email: prithidipa.sahoo@visva-bharati.ac.in)

Number of Pages: 9

Number of Tables: 3

Number of Figures: 10

Methods	Methods/Material applied	Linear Range	Limit of Detection	Application	References
Droplet-based microfluidic SERS technique (Surface- enhanced Raman scattering)	Au nanoparticles QY= Not available	0.010 μM- 10μΜ	0.032 μM	Detection in human serum	Zhang <i>et. al.</i> 2019 [1]
Fluorimetry	CQD–AgNP CQD–AuNP QY=~6%	0.03- 1.0 μM	0.01 µM	Detection in human plasma samples	Amjadi <i>et.al.</i> 2017 [2]
Free-standing liquid membrane SERS substrate	Ag _{core} Au _{shell} NPs QY= Not available	$\begin{array}{ccc} 10 & \sim \\ 100 & \mu g \\ kg^{-1} \end{array}$	5 μg kg ⁻¹	Detection in human body fluids	Liu <i>et.al.</i> 2022 [3]
Fluorimetry	SNCQDs QY=23%	0.005- 80 μM	0.0016 μM	Detection in plasma and urine of leukemia patient	Yu <i>et.al.</i> 2019 [4]
Fluorimetry	NCQDs QY= 19.45%	4.8- 55.2 μM	0.0113 μM	Detection and trapping of 6TG in plants to resist fire blight	This Work

Table S1. Performance comparison of existing methods and present method fordetection of 6-Thioguanine using nanosensors

Plant Treatment:

Fig. S1 (A). Control: No treatment was given to the plant and monitor for 30hrs. (B). S_1 : Treated with low concentrate N-CQD (1mg/1ml) and kept in observation for 30hrs. (C). S_4 : Treated with high concentrate N-CQD (4mg/1ml) and kept in observation for 30hrs. (D) S_1 ': Treated another plant with low concentrate N-CQD (1mg/1ml) as S_1 (monitor for 24hrs) and after 24hrs, again treated with 6-thioguanine (monitor for 6hrs). Kept under surveillance for a total of 30 hours. (E) S_4 ': Treated another plant with high concentrate N-CQD (4mg/1ml) as S_4 (monitor for 24hrs) and after 24hrs, again treated with 6-thioguanine (monitor for 6hrs). Kept under surveillance for a total of 30 hours. (E) S_4 ': Treated another plant with high concentrate N-CQD (4mg/1ml) as S_4 (monitor for 24hrs) and after 24hrs, again treated with 6-thioguanine (monitor for 6hrs). Kept under surveillance for a total of 30 hours.

TEM and HRTEM images of the N-CQDs:

Fig. S2 A) TEM and B) HRTEM images of the N-CQDs.

EI (electronic image) and EDX images of the N-CQDs:

Fig. S3 EDX pattern of the N-CQDs.

XPS image of the N-CQDs:

Fig. S4 XPS spectrum of N-CQDs.

Photostability:

Fig. S5 Photostability test and fluorescence response of N-CQDs under continuous 365 nm UV light irradiation.

UV-Titration:

Fig. S6 UV-vis absorption spectra of N-CQDs upon addition of 6-thioguanine (10⁻⁴ M) at p^H 7.4 PBS buffer.
Binding constant calculation graph (Fluorescence method):

Fig. S7 Linear regression analysis for the calculation of association constant value by fluorescence titration method.

The association const. (K_a) of N-CQDs for sensing 6-thioguanine was determined from the equation: $K_a = intercept/slope$. From the linear fit graph, we get intercept=1.39956, slope =1.21614 ×10⁻⁴. Thus, we get $K_a = (1.39956) / (1.21614 \times 10^{-4}) = 11.5 \times 10^3 M^{-1}$

Table S2. Calculation	of Standard Deviation	and Limit of De	etection (LOD) f	for 6-
thioguanine				

Blank Reading (N- CQDs)	Fluorescence Intensities at 430 nm (X)	Mean (^x)	Standard Deviation (σ) = $\sqrt{\frac{\sum X - x ^2}{N}}$
Reading 1	3106.00	3105.95	0.2391
Reading 2	3105.82		
Reading 3	3106.14		
Reading 4	3105.56		
Reading 5	3106.23		

Slope, m for 6-thioguanine = 6.3313×10^7

LOD for 6-thioguanine = $3\sigma/m = (3 \times 0.2391)/(6.3313 \times 10^7) = 0.0113 \times 10^{-6} M = 0.0113 \mu M = 11.29 nM$

Fig. S8 Linear fit curve of N-CQDs at 450 nm with respect to 6-thioguanine concentration.

Selectivity:

Fig. S9 (A) Competitive fluorescence spectra of N-CQDs with different biomolecules and (B) metals at 450 nm ($\lambda ex = 360$ nm).

Fluorescence lifetime decay:

Fig. S10 The fluorescence lifetime of the N-CQDs before (green) and after the addition of 6TG (red).

Syst em	b ₁	τ1	b ₂	$ au_2$	b 3	$ au_3$	b 4	τ4	$<\tau>=b_1\tau_1+b_2\tau_2+\\b_3\tau_3+b_4\tau_4$
N- CQ Ds	2.1892 36E-02	1.2222 63E-09	1.9427 66E-02	3.6329 71E-09	3.5005 2E-03	8.0617 95E-09	4.4366 11E-02	2.6429 87E-10	0.14ns
N- CQ Ds + 6TG	2.4452 79E-02	8.8547 46E-10	1.9274 59E-02	3.0727 05E-09	7.7199 4E-03	6.7318 14E-09	9.5881 96E-02	1.0365 29E-10	0.14ns

Table S3. Decay time components of N-CQDs, N-CQDs + 6TG

REFERENCES

- 1. W. S. Zhang, Y. N. Wang, Y. Wang, Z. R. Xu Sens. Actuators B Chem. 2019, 283, 532–537.
- 2. M. Amjadi, R. Shokri, T. Hallaj. Luminescence, 2017, 32(3), 292-297.
- W. Liu, S. Zhou, J. Liu, X. Zhao, Z. Feng, D. Wang, Z. Gong, M. Fan. Anal Bioanal Chem. 2022, 414(4), 1663-1670.
- 4. C. Yu, X. Jiang, D. Qin, G. Mo. ACS Sustainable Chem. Eng. 2019, 7 (19), 16112–16120.